Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two age-related and fatal neurodegenerative disorders that lie on a shared disease spectrum. While both disorders involve complex interactions between neuronal and glial cells, the specific cell-type alterations and their contributions to disease pathophysiology remain incompletely understood. Here, we applied single-nucleus RNA sequencing of the orbitofrontal cortex, a region affected in ALS-FTLD, to map cell-type specific transcriptional signatures in C9orf72-related ALS (with and without FTLD) and sporadic ALS cases.
View Article and Find Full Text PDFNeuronal cytoplasmic aggregation and ubiquitination of TDP-43 is the most common disease pathology linking Amyotrophic Lateral Sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 pathology is characterized by the presence of low molecular weight TDP-43 species generated through proteolytic cleavage and/or abnormal RNA processing events. In addition to N-terminally truncated TDP-43 species, it has become evident that C-terminally truncated variants generated through alternative splicing in exon 6 also contribute to the pathophysiology of ALS/FTLD.
View Article and Find Full Text PDFTDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death.
View Article and Find Full Text PDFActa Neuropathol Commun
October 2019
A hexanucleotide repeat expansion in a noncoding region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Reduction of select or total C9orf72 transcript and protein levels is observed in postmortem C9-ALS/FTD tissue, and loss of C9orf72 orthologues in zebrafish and C. elegans results in motor deficits.
View Article and Find Full Text PDFObjective: Suggested disease mechanisms for amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration include haploinsufficiency, GC/CG RNA foci, and dipeptide repeat (DPR) proteins translated from the GC expansion; however, the role of small expansions (e.g., 30-90 repeats) is unknown and was investigated here.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
February 2018
We have employed as 'gold standards' two in-house, well-characterised and validated polyclonal antibodies, C9-L and C9-S, which detect the longer and shorter forms of C9orf72, and have compared seven other commercially available antibodies with these in order to evaluate the utility of the latter as credible tools for the demonstration of C9orf72. C9-L and C9-S antibodies immunostained cytoplasmic 'speckles', and the nuclear membrane, respectively, in cerebellar Purkinje cells of the cerebellum in patients with behavioural variant frontotemporal dementia (bvFTD) with amyotrophic lateral sclerosis (ALS), and in patients with ALS alone. Similar staining was seen in Purkinje cells in healthy control tissues and in other neurodegenerative disorders, and in pyramidal cells of CA4 and dentate gyrus of hippocampus.
View Article and Find Full Text PDFA hexanucleotide (G4C2) repeat expansion in the 5' non-coding region C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Three modes of toxicity have been proposed: gain of function through formation of RNA foci and sequestration of RNA binding proteins; expression of dipeptide repeat proteins generated by repeat-associated non-ATG translation; and loss of function due to C9orf72 haploinsufficiency. Much is known about the proposed gain of function mechanisms, but there is little knowledge of the normal function of C9orf72 and the cellular consequences if its activity is perturbed.
View Article and Find Full Text PDFTar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare.
View Article and Find Full Text PDFObjective: A noncoding hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It has been reported that the repeat expansion causes a downregulation of C9orf72 transcripts, suggesting that haploinsufficiency may contribute to disease pathogenesis. Two protein isoforms are generated from three alternatively spliced transcripts of C9orf72; a long form (C9-L) and a short form (C9-S), and their function(s) are largely unknown owing to lack of specific antibodies.
View Article and Find Full Text PDFThe presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATG(Met85)), denoted here as Met(85)-TDP-35. Met(85)-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation.
View Article and Find Full Text PDFPeripherin is a type III intermediate filament protein, the expression of which is associated with the acquisition and maintenance of a terminally differentiated neuronal phenotype. Peripherin up-regulation occurs during acute neuronal injury and in degenerating motor neurons of amyotrophic lateral sclerosis. The functional role(s) of peripherin during normal, injurious, and disease conditions remains unknown, but may be related to differential expression of spliced isoforms.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) is a devastating adult onset neurodegenerative disease affecting both upper and lower motor neurons. TDP-43, encoded by the TARDBP gene, was identified as a component of motor neuron cytoplasmic inclusions in both familial and sporadic ALS and has become a pathological signature of the disease. TDP-43 is a nuclear protein involved in RNA metabolism, however in ALS, TDP-43 is mislocalized to the cytoplasm of affected motor neurons, suggesting that disease might be caused by TDP-43 loss of function.
View Article and Find Full Text PDFTo identify susceptibility genes for amyotrophic lateral sclerosis (ALS), we conducted a genome-wide association study (GWAS) in 506 individuals with sporadic ALS and 1,859 controls of Han Chinese ancestry. Ninety top SNPs suggested by the current GWAS and 6 SNPs identified by previous GWAS were analyzed in an independent cohort of 706 individuals with ALS and 1,777 controls of Han Chinese ancestry. We discovered two new susceptibility loci for ALS at 1q32 (CAMK1G, rs6703183, Pcombined = 2.
View Article and Find Full Text PDFTDP-43 is a predominantly nuclear DNA/RNA binding protein involved in transcriptional regulation and RNA processing. TDP-43 is also a component of the cytoplasmic inclusion bodies characteristic of amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). We have investigated the premise that abnormalities of TDP-43 in disease would be reflected by changes in processing of its target RNAs.
View Article and Find Full Text PDFThe neuronal intermediate filament protein peripherin is a component of ubiquitinated inclusions and of axonal spheroids in amyotrophic lateral sclerosis (ALS). Overexpression of peripherin causes motor neuron degeneration in transgenic mice and variations within the peripherin gene have been identified in ALS cases. We have shown previously the abnormal expression of a neurotoxic peripherin splice variant in transgenic mice expressing mutant superoxide dismutase-1.
View Article and Find Full Text PDFPeripherin is a type III neuronal intermediate filament protein detected within the intraneuronal inclusions characteristic of amyotrophic lateral sclerosis. The constitutively expressed peripherin isoform is encoded by all nine exons of the human and mouse peripherin genes to generate a protein species of approximately 58 kDa on sodium dodecyl sulfate-polyacrylamide gels. Expression of this isoform, termed Per-58, generates a filament network in transfected SW13 vim cells.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the presence of various types of ubiquitinated inclusions in the cytoplasm of affected motor neurons. The identification of the ubiquitinated targets within these inclusions has represented a major challenge, as this may provide new gene candidates and/or clues to understanding the neurodegenerative mechanism(s) underlying the disease. As such, the nuclear factor TAR DNA-binding protein (TDP-43) was recently identified as a component of ubiquitinated skein-like inclusions and round inclusions in ALS.
View Article and Find Full Text PDFMislocalization of the TAR-DNA binding protein (TDP-43) from the nucleus to the cytoplasm of diseased motor neurons and association with intraneuronal ubiquitinated inclusions has recently been reported in amyotrophic lateral sclerosis (ALS). Here, we have investigated TDP-43 immunoreactivity in three lines of mutant SOD1 transgenic mice, G93A, G37R and G85R and compared with labeling in one sporadic ALS case and two familial ALS cases carrying mutations in SOD1, A4T and I113T. Our findings show that there is no mislocalization of TDP-43 to the cytoplasm in motor neurons of mutant SOD1 transgenic mice, nor association of TDP-43 with ubiquitinated inclusions.
View Article and Find Full Text PDFThere is increasing evidence of a clinical, neuropathological and genetic overlap between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We conducted a case-control study using a UK dataset to test the hypothesis that polymorphisms in two FTD-related genes (GRN and FT74) are associated with increased susceptibility to ALS. We evaluated the majority of known genetic variability in IFT74 and GRN.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2007
One of the pathological hallmarks of ALS is the presence of axonal spheroids and perikaryal accumulations/aggregations comprised of the neuronal intermediate filament proteins, neurofilaments and peripherin. These abnormalities represent a point of convergence of both familial and sporadic forms of the disease and understanding their formation may reveal shared pathways in what is otherwise considered a highly heterogeneous disorder. Here we provide a review of the basic biology of neurofilaments and peripherin and the evidence linking them with ALS disease pathogenesis.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
May 2002
Objective: To ascertain histology changes of hereditary gingival fibromatosis (HGF) and the location of HGF gene.
Methods: A pedigree analyses of HGF; and the ultrastructure of gingival overgrowth tissue was observed with electron microscopy. The overgrowth of the HGF gene was defined with microsatellite markers.
We established a recessive cataract model from a spontaneous mutation in the KUNMING outbred mice. Lens opacity appears 11 days after birth. Slit lamp examination reveals that the opacity mainly localizes to the nuclear region of the lens.
View Article and Find Full Text PDF