Publications by authors named "Shangrui Guo"

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening.

View Article and Find Full Text PDF

Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus.

View Article and Find Full Text PDF

Enterovirus consists of a variety of viruses that could cause a wide range of illness in human. The pathogenesis of these viruses remains incompletely understood and no specific treatment is available. Better methods to study enterovirus infection in live cells will help us better understand the pathogenesis of these viruses and might contribute to antiviral development.

View Article and Find Full Text PDF

SARS-CoV-2 infection causes syncytial pneumocyte in patients and this has been considered as a defining feature of severe COVID-19 cases. Traditional methods of syncytia quantification require the morphology characterization of fused cells either with light microscope or fluorescent microscope, which is time-consuming and not accurate. Here we developed a rapid and sensitive coculture system measuring spike-induced syncytia by using NanoLuc complementation system.

View Article and Find Full Text PDF

The recent COVID-19 pandemic poses a global health emergency. Cellular entry of the causative agent SARS-CoV-2 is mediated by its spike protein interacting with cellular receptor-human angiotensin converting enzyme 2 (ACE2). Here, by using lentivirus based pseudotypes bearing spike protein, we demonstrated that entry of SARS-CoV-2 into host cells was dependent on clathrin-mediated endocytosis, and phosphoinositides played essential roles during this process.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) is deemed a reemergent pathogen, with recent outbreaks worldwide. EV71 infection causes hand, foot, and mouth disease (HFMD) and has been associated with severe cardiac and central nervous system complications and even death. Viruses need host factors to complete their life cycle; therefore, the identification of the host factors for EV71 infection is pivotal to new antiviral research.

View Article and Find Full Text PDF