Publications by authors named "Shangding Gu"

Reinforcement Learning (RL) has achieved tremendous success in many complex decision-making tasks. However, safety concerns are raised during deploying RL in real-world applications, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safe control has a long history, the study of safe RL algorithms is still in the early stages.

View Article and Find Full Text PDF

Deployment of Reinforcement Learning (RL) algorithms for robotics applications in the real world requires ensuring the safety of the robot and its environment. Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence. In this paper, we envision a human-centered SRRL framework consisting of three stages: safe exploration, safety value alignment, and safe collaboration.

View Article and Find Full Text PDF

Industries, such as manufacturing, are accelerating their embrace of the metaverse to achieve higher productivity, especially in complex industrial scheduling. In view of the growing parking challenges in large cities, high-density vehicle spatial scheduling is one of the potential solutions. Stack-based parking lots utilize parking robots to densely park vehicles in the vertical stacks like container stacking, which greatly reduces the aisle area in the parking lot, but requires complex scheduling algorithms to park and take out the vehicles.

View Article and Find Full Text PDF