The exotic polarization configurations of topologically protected dipolar textures have opened new avenues for realizing novel phenomena absent in traditional ferroelectric systems. While multiple recent studies have revealed a diverse array of emergent properties in such polar topologies, the details of their atomic and mesoscale structures remain incomplete. Through atomic- and meso-scale imaging techniques, the emergence of a macroscopic ferroelectric polarization along both principal axes of the vortex lattice while performing phase-field modeling to probe the atomic scale origins of these distinct polarization components is demonstrated.
View Article and Find Full Text PDFDielectric electrostatic capacitors, because of their ultrafast charge-discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems. Moreover, state-of-the-art miniaturized electrochemical energy storage systems-microsupercapacitors and microbatteries-currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness, leaving an opportunity for electrostatic microcapacitors.
View Article and Find Full Text PDFNanobeam electron diffraction can probe local structural properties of complex crystalline materials including phase, orientation, tilt, strain, and polarization. Ideally, each diffraction pattern from a projected area of a few unit cells would produce a clear Bragg diffraction pattern, where the reciprocal lattice vectors can be measured from the spacing of the diffracted spots, and the spot intensities are equal to the square of the structure factor amplitudes. However, many samples are too thick for this simple interpretation of their diffraction patterns, as multiple scattering of the electron beam can produce a highly nonlinear relationship between the spot intensities and the underlying structure.
View Article and Find Full Text PDFThe critical size limit of voltage-switchable electric dipoles has extensive implications for energy-efficient electronics, underlying the importance of ferroelectric order stabilized at reduced dimensionality. We report on the thickness-dependent antiferroelectric-to-ferroelectric phase transition in zirconium dioxide (ZrO) thin films on silicon. The emergent ferroelectricity and hysteretic polarization switching in ultrathin ZrO, conventionally a paraelectric material, notably persists down to a film thickness of 5 angstroms, the fluorite-structure unit-cell size.
View Article and Find Full Text PDFWith the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO (ref. ), which remains the material of choice to date.
View Article and Find Full Text PDFPolar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation–based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFUltrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system.
View Article and Find Full Text PDFA room temperature amorphous ferromagnetic oxide semiconductor can substantially reduce the cost and complexity associated with utilizing crystalline materials for spintronic devices. We report a new material (FeDyTb)O (FDTO), which shows semiconducting behavior with reasonable electrical conductivity (~500 mOhm-cm), an optical band-gap (2.4 eV), and a large enough magnetic moment (~200 emu/cc), all of which can be tuned by varying the oxygen content during deposition.
View Article and Find Full Text PDFNanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 10 S m is observed in certain BiFeO DWs, which is about 100 000 times greater than the carrier-induced direct current (dc) conductivity of the same walls.
View Article and Find Full Text PDFThe manipulation of charge and lattice degrees of freedom in atomically precise, low-dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO /PbTiO /SrTiO trilayer is investigated.
View Article and Find Full Text PDFThe desire for low-power/voltage operation of devices is driving renewed interest in understanding scaling effects in ferroelectric thin films. As the dimensions of ferroelectrics are reduced, the properties can vary dramatically, including the robust scaling relationship between coercive field ( E) and thickness ( d), also referred to as the Janovec-Kay-Dunn (JKD) law, wherein E ∝ d. Here, we report that whereas (001)-oriented heterostructures follow JKD scaling across the thicknesses range of 20-330 nm, (111)-oriented heterostructures of the canonical tetragonal ferroelectric PbZrTiO exhibit a deviation from JKD scaling wherein a smaller scaling exponent for the evolution of E is observed in films of thickness ≲ 165 nm.
View Article and Find Full Text PDFChirality is a geometrical property by which an object is not superimposable onto its mirror image, thereby imparting a handedness. Chirality determines many important properties in nature-from the strength of the weak interactions according to the electroweak theory in particle physics to the binding of enzymes with naturally occurring amino acids or sugars, reactions that are fundamental for life. In condensed matter physics, the prediction of topologically protected magnetic skyrmions and related spin textures in chiral magnets has stimulated significant research.
View Article and Find Full Text PDFA strain-driven orthorhombic (O) to rhombohedral (R) phase transition is reported in La-doped BiFeO thin films on silicon substrates. Biaxial compressive epitaxial strain is found to stabilize the rhombohedral phase at La concentrations beyond the morphotropic phase boundary (MPB). By tailoring the residual strain with film thickness, we demonstrate a mixed O/R phase structure consisting of O phase domains measuring tens of nanometers wide within a predominant R phase matrix.
View Article and Find Full Text PDFA range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T).
View Article and Find Full Text PDFA novel mesoscale state comprising of an ordered polar vortex lattice has been demonstrated in ferroelectric superlattices of PbTiO/SrTiO. Here, we employ phase-field simulations, analytical theory, and experimental observations to evaluate thermodynamic conditions and geometric length scales that are critical for the formation of such exotic vortex states. We show that the stability of these vortex lattices involves an intimate competition between long-range electrostatic, long-range elastic, and short-range polarization gradient-related interactions leading to both an upper and a lower bound to the length scale at which these states can be observed.
View Article and Find Full Text PDFA novel approach to on-demand improvement of electronic properties in complex-oxide ferroelectrics is demonstrated whereby ion bombardment - commonly used in classic semiconductor materials - is applied to the PbTiO system. The result is deterministic reduction in leakage currents by 5 orders of magnitude, improved ferroelectric switching, and unprecedented insights into the nature of defects and intergap state evolution in these materials.
View Article and Find Full Text PDFMagnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e.
View Article and Find Full Text PDFDespite extensive studies on the effects of epitaxial strain on the evolution of the lattice and properties of materials, considerably less work has explored the impact of strain on growth dynamics. In this work, we demonstrate a growth-mode transition from 2D-step flow to self-organized, nanoscale 3D-island formation in PbZr0.2Ti0.
View Article and Find Full Text PDFSingle-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature.
View Article and Find Full Text PDFHigh-quality epitaxial growth of inter-metallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.
View Article and Find Full Text PDFThere is growing evidence that domain walls in ferroics can possess emergent properties that are absent in the bulk. For example, 180° ferroelectric domain walls in the ferroelectric-antiferromagnetic BiFeO3 are particularly interesting because they have been predicted to possess a range of intriguing behaviors, including electronic conduction and enhanced magnetization. To date, however, ordered arrays of such domain structures have not been reported.
View Article and Find Full Text PDF