Heterogeneity in the differentiation behavior of hematopoietic stem cells is well documented but poorly understood. To investigate this question at a clonal level, we isolated a subpopulation of adult mouse bone marrow that is highly enriched for multilineage in vivo repopulating cells and transplanted these as single cells, or their short-term clonal progeny generated in vitro, into 352 recipients. Of the mice, 93 showed a donor-derived contribution to the circulating white blood cells for at least 4 months in one of four distinct patterns.
View Article and Find Full Text PDFAcute graft-versus-host disease (GVHD) is diagnosed by clinical and histologic criteria that are often nonspecific and typically apparent only after the disease is well established. Because GvHD is mediated by donor T cells and other immune effector cells, we sought to determine whether changes within a wide array of peripheral blood lymphocyte populations could predict the development of GvHD. Peripheral blood samples from 31 patients undergoing allogeneic blood and marrow transplant were analyzed for the proportion of 121 different subpopulations defined by 4-color combinations of lymphocyte phenotypic and activation markers at progressive time points posttransplant.
View Article and Find Full Text PDFOur previous results demonstrated that some essential, housekeeping proteins from pathogenic microorganisms may contain sizable insertions-deletions in their sequences (compared to close human homologs) that can be responsible for unexpected virulence properties. For example, we found that indel-bearing elongation factor-1alpha from several pathogenic protozoa can activate a human tyrosine phosphatase SHP-1 leading to deactivation of macrophages. On the one hand, these findings allowed development of a strategy for targeting some indel-containing pathogen proteins that have similar human counterparts.
View Article and Find Full Text PDFWada and colleagues have shown that, whether prokaryotic or eukaryotic, each gene has a "homostabilising propensity" to adopt a relatively uniform GC percentage (GC%). Accordingly, each gene can be viewed as a "microisochore" occupying a discrete GC% niche of relatively uniform base composition amongst its fellow genes. Although first, second and third codon positions usually differ in GC%, each position tends to maintain a uniform, gene-specific GC% value.
View Article and Find Full Text PDF