Micromachines (Basel)
January 2022
Graphene nano-electromechanical resonant sensors have wide application in areas such as seawater desalination, new energy, biotechnology, and aerospace due to their small size, light weight, and high sensitivity and resolution. This review first introduces the physical and chemical properties of graphene and the research progress of four preparation processes of graphene. Next, the principle prototype of graphene resonators is analyzed, and three main methods for analyzing the vibration characteristics of a graphene resonant sheet are described: molecular structural mechanics, non-local elastic theory and molecular dynamics.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2021
In consideration of the presented optical-thermally excited resonant mass detection scheme, molecular dynamics calculations are performed to investigate the thermal actuation and resonant mass sensing mechanism. The simulation results indicate that an extremely high temperature exists in a 6% central area of the graphene sheet exposed to the exciting laser. Therefore, constraining the laser driving power and enlarging the laser spot radius are essential to weaken the overheating in the middle of the graphene sheet, thus avoiding being burned through.
View Article and Find Full Text PDFIn this study, a graphene beam was selected as a sensing element and used to form a graphene resonant gyroscope structure with direct frequency output and ultrahigh sensitivity. The structure of the graphene resonator gyroscope was simulated using the ANSYS finite element software, and the influence of the length, width, and thickness of the graphene resonant beam on the angular velocity sensitivity was studied. The simulation results show that the resonant frequency of the graphene resonant beam decreased with increasing the beam length and thickness, while the width had a negligible effect.
View Article and Find Full Text PDFMicromachines (Basel)
February 2021
Edge mode could disturb the ultra-subtle mass detection for graphene resonators. Herein, classical molecular dynamics simulations are performed to investigate the effect of edge mode on mass sensing for a doubly clamped strained graphene resonator. Compared with the fundamental mode, the localized vibration of edge mode shows a lower frequency with a constant frequency gap of 32.
View Article and Find Full Text PDFCertain nonlinear influences are found in dual-tube Coriolis mass flowmeters (CMFs). According to experimentation, a nonlinearity dominated by frequency-doubling signals can be observed in the measuring signal. In general, such nonlinear effects are simplified as linear systems or neglected through processing.
View Article and Find Full Text PDFHerein, a peripherally clamped stretched square monolayer graphene sheet with a side length of 10 nm was demonstrated as a resonator for atomic-scale mass sensing via molecular dynamics (MD) simulation. Then, a novel method of mass determination using the first three resonant modes (mode11, mode21 and mode22) was developed to avoid the disturbance of stress fluctuation in graphene. MD simulation results indicate that improving the prestress in stretched graphene increases the sensitivity significantly.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2019
An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio.
View Article and Find Full Text PDFA novel, ultrahigh-sensitivity wide-range resonant micro-accelerometer using two differential double-clamped monolayer graphene beams is designed and investigated by steady-state simulation via COMSOL Multiphysics software in this paper. Along with stiffness-enhanced optimized folded support beams, two symmetrical 3-GPa prestressed graphene nano-beams serve as resonant sensitive elements with a size of 10 μm × 1 μm (length × width) to increase the acceleration sensitivity while extending the measurement range. The simulation results show that the accelerometer with cascade-connected graphene and proof-mass assembly exhibits the ultrahigh sensitivity of 21,224 Hz/g and quality factor of 9773 in the range of 0⁻1000 g.
View Article and Find Full Text PDFAcoustic communication has an important role in the reproductive behaviour of anurans. Although males of the concave-eared frog (Odorrana tormota) have shown an ultrasonic communication capacity adapted to the intense, predominately low-frequency ambient noise from local streams, whether the females communicate with ultrasound remains unclear. Here we present evidence that females exhibit no ultrasonic sensitivity.
View Article and Find Full Text PDF