The electrochemical reduction reaction of nitrate (NORR) is an attractive route to produce ammonia at ambient conditions, but the conversion from nitrate to ammonia, which requires nine protons, has to compete with both the two-proton process of nitrite formation and the hydrogen evolution reaction. Extensive research efforts have thus been made in recent studies to develop electrocatalysts for the NORR facilitating the production of ammonia. Rather than designing another better electrocatalyst, herein, we synthesize an electrochemically inactive, porous, and chemically robust zirconium-based metal-organic framework (MOF) with enriched intraframework sulfonate groups, SO-MOF-808, as a coating deposited on top of the catalytically active copper-based electrode.
View Article and Find Full Text PDFImmobilization of graphene quantum dots (GQDs) on a solid support is crucial to prevent GQDs from aggregation in the form of solid powder and facilitate the separation and recycling of GQDs after use. Herein, spatially dispersed GQDs are post-synthetically coordinated within a two-dimensional (2D) and water-stable zirconium-based metal-organic framework (MOF). Unlike pristine GQDs, the obtained GQDs immobilized on 2D MOF sheets show photoluminescence in both suspension and dry powder.
View Article and Find Full Text PDF