Publications by authors named "Shang Jun Loo"

Minitablets are prepared using multiple die openings and multi-tip punches for greater productivity. With multiple tips on the punch barrel, the overall compaction force to be applied is commonly estimated by multiplying the desired compaction force per tip by the number of punch tips. Few researchers have however examined this proportionality and the effects of the number of punch tips and punch face geometry on the critical quality attributes (CQAs) of high drug load minitablets.

View Article and Find Full Text PDF

The maximal amount of drug contained in a minitablet is limited. To reduce the total number of minitablets in a single dose, high drug load minitablets can be prepared from high drug load feed powders by various pharmaceutical processing techniques. Few researchers have however examined the influence of pharmaceutical processing techniques on the properties of high drug load feed powders, and consequently the manufacturability of high drug load minitablets.

View Article and Find Full Text PDF

Micronized drug powders are generally unsuitable as tableting feed to produce minitablets due to their cohesivity and poor flow. The silicification of fine paracetamol powder (PCM) with an optimal concentration range of fumed silica (fSi) [0.7-0.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance.

View Article and Find Full Text PDF