Mesenchymal stem cells (MSCs) are potential therapeutics for the treatment of periodontal defects. It is increasingly accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly exosomes. Here, we investigated the therapeutic effects of human MSC exosome-loaded collagen sponge for regeneration of surgically created periodontal intrabony defects in an immunocompetent rat model.
View Article and Find Full Text PDFThe efficacy of mesenchymal stem cell (MSC) therapies is increasingly attributed to paracrine secretion, particularly exosomes. In this study, we investigated the role of MSC exosomes in the regulation of inflammatory response, nociceptive behaviour, and condylar cartilage and subchondral bone healing in an immunocompetent rat model of temporomandibular joint osteoarthritis (TMJ-OA). We observed that exosome-mediated repair of osteoarthritic TMJs was characterized by early suppression of pain and degeneration with reduced inflammation, followed by sustained proliferation and gradual improvements in matrix expression and subchondral bone architecture, leading to overall joint restoration and regeneration.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) exosome was previously shown to be effective in repairing critical size osteochondral defects in an immunocompetent rat model. Here we investigate the cellular processes modulated by MSC exosomes and the mechanism of action underlying the exosome-mediated responses in cartilage repair. We observed that exosome-mediated repair of osteochondral defects was characterised by increased cellular proliferation and infiltration, enhanced matrix synthesis and a regenerative immune phenotype.
View Article and Find Full Text PDF