The science of drug discovery involves multiparameter optimization of molecular structures through iterative design-make-test cycles. For medicinal chemistry library synthesis, traditional workflows involve the isolation of each individual compound, gravimetric quantitation, and preparation of a standard concentration solution for biological assays. In this work, we explore ways to expedite this process by testing unpurified library mixtures using a combination of mass spectrometry-based assays for affinity selection and microsomal metabolic stability.
View Article and Find Full Text PDFSite-selective functionalization of the heterobenzylic C(sp)-H bonds of pyridines and related heteroaromatic compounds presents challenges associated with the basic nitrogen atom and the variable reactivity among different positions on the heteroaromatic ring. Methods for functionalization of 2- and 4-alkylpyridines are increasingly available through polar pathways that leverage resonance stabilization of charge build-up at these positions. In contrast, functionalization of 3-alkylpyridines is largely inaccessible.
View Article and Find Full Text PDFPositron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis.
View Article and Find Full Text PDFPharmaceutical and agrochemical discovery efforts rely on robust methods for chemical synthesis that rapidly access diverse molecules. Cross-coupling reactions are the most widely used synthetic methods, but these methods typically form bonds to C()-hybridized carbon atoms (e.g.
View Article and Find Full Text PDFHigh-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity.
View Article and Find Full Text PDFConspectusCross-coupling methods are the most widely used synthetic methods in medicinal chemistry. Existing reactions are dominated by methods such as amide coupling and arylation reactions that form bonds to sp-hybridized carbon atoms and contribute to the formation of "flat" molecules. Evidence that three-dimensional structures often have improved physicochemical properties for pharmaceutical applications has contributed to growing demand for cross-coupling methods with sp-hybridized reaction partners.
View Article and Find Full Text PDFSite-selective radical reactions of benzylic C-H bonds are now highly effective methods for C(sp-H) functionalization and cross-coupling. The existing methods, however, are often ineffective with heterobenzylic C-H bonds in alkyl-substituted pyridines and related aromatic heterocycles that are prominently featured in pharmaceuticals and agrochemicals. Here, we report new synthetic methods that leverage polar, rather than radical, reaction pathways to enable the selective heterobenzylic C-H chlorination of 2- and 4-alkyl-substituted pyridines and other heterocycles.
View Article and Find Full Text PDFAn emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative.
View Article and Find Full Text PDFCysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive -quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces.
View Article and Find Full Text PDFReaction generality is crucial in determining the overall impact and usefulness of synthetic methods. Typical generalization protocols require a priori mechanistic understanding and suffer when applied to complex, less understood systems. We developed an additive mapping approach that rapidly expands the utility of synthetic methods while generating concurrent mechanistic insight.
View Article and Find Full Text PDFThe utilization of isolated Palladium Oxidative Addition Complexes (OACs) has had a significant impact on Pd-catalyzed and Pd-mediated cross-coupling reactions. Despite their importance, widespread utility of OACs has been limited by the instability of their precursor complexes. Herein, we report the use of Cámpora's palladacycle as a new, more stable precursor to Pd OACs.
View Article and Find Full Text PDFAzoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds.
View Article and Find Full Text PDFC(sp)-H functionalization methods provide an ideal synthetic platform for medicinal chemistry; however, such methods are often constrained by practical limitations. The present study outlines a C(sp)-H isocyanation protocol that enables the synthesis of diverse, pharmaceutically relevant benzylic ureas in high-throughput format. The operationally simple C-H isocyanation method shows high site selectivity and good functional group tolerance, and uses commercially available catalyst components and reagents [CuOAc, 2,2'-bis(oxazoline) ligand, (trimethylsilyl)isocyanate, and -fluorobenzenesulfonimide].
View Article and Find Full Text PDFPalladium oxidative addition complexes (OACs) have recently emerged as useful tools to enable challenging bond connections. However, each OAC can only be formed with one dative ligand at a time. As no one ligand is optimal for every cross-coupling reaction, we herein disclose a ligand exchange protocol for the preparation of a series of OACs bearing a variety of ancillary ligands from one common complex.
View Article and Find Full Text PDFThe "magic methyl" effect describes the change in potency, selectivity, and/or metabolic stability of a drug candidate associated with addition of a single methyl group. We report a synthetic method that enables direct methylation of C(sp)-H bonds in diverse drug-like molecules and pharmaceutical building blocks. Visible light-initiated triplet energy transfer promotes homolysis of the O-O bond in di--butyl or dicumyl peroxide under mild conditions.
View Article and Find Full Text PDFAn integrated workflow has been established that enables the synthesis, purification, and subsequent biological testing of compound libraries on a microgram scale. This approach utilizes mass directed preparative HPLC in conjunction with charged aerosol detection (CAD) to generate solutions of investigational compounds at high purity and standardized concentrations, facilitating high fidelity biological testing. This new workflow successfully delivered libraries of histone deacetylase (HDAC) inhibitors that afforded biological data consistent with that obtained from standard scale parallel medicinal chemistry techniques.
View Article and Find Full Text PDFThe synthetic chemistry literature traditionally reports the scope of new methods using simple, nonstandardized test molecules that have uncertain relevance in applied synthesis. In addition, published examples heavily favor positive reaction outcomes, and failure is rarely documented. In this environment, synthetic practitioners have inadequate information to know whether any given method is suitable for the task at hand.
View Article and Find Full Text PDFHerein we report a Cu-catalyzed, site-selective functionalization of peptides that employs an aspartic acid (Asp) as a native directing motif, which directs the site of O-arylation at a proximal tyrosine (Tyr) residue. Through a series of competition studies conducted in high-throughput reaction arrays, effective conditions were identified that gave high selectivity for the proximal Tyr in Asp-directed Tyr modification. Good levels of site-selectivity were achieved in the O-arylation at a proximal Tyr residue in a number of cases, including a peptide-small molecule hybrid.
View Article and Find Full Text PDFCross-coupling reactions enable rapid, convergent synthesis of diverse molecules and provide the foundation for modern chemical synthesis. The most widely used methods employ sp-hybridized coupling partners, such as aryl halides or related pre-functionalized substrates. Here, we demonstrate copper-catalysed oxidative cross coupling of benzylic C-H bonds with alcohols to afford benzyl ethers, enabled by a redox-buffering strategy that maintains the activity of the copper catalyst throughout the reaction.
View Article and Find Full Text PDFA convenient two-step method is reported for the ligation of alkoxyamine- or hydrazine-bearing cargo to proline N-termini. Using this approach, bifunctional proline N-terminal bioconjugates are constructed and proline N-terminal proteins are immobilized.
View Article and Find Full Text PDFA synthetic method to access novel azido-insulin analogs directly from recombinant human insulin (RHI) was developed via diazo-transfer chemistry using imidazole-1-sulfonyl azide. Systematic optimization of reaction conditions led to site-selective azidation of amino acids B1-phenylalanine and B29-lysine present in RHI. Subsequently, the azido-insulin analogs were used in azide-alkyne [3 + 2] cycloaddition reactions to synthesize a diverse array of triazole-based RHI bioconjugates that were found to be potent human insulin receptor binders.
View Article and Find Full Text PDFA convenient enzymatic strategy is reported for the modification of proline residues in the N-terminal positions of proteins. Using a tyrosinase enzyme isolated from Agaricus bisporus (abTYR), phenols and catechols are oxidized to highly reactive o-quinone intermediates that then couple to N-terminal proline residues in high yield. Key advantages of this bioconjugation method include (1) the use of air-stable precursors that can be prepared on large scale if needed, (2) mild reaction conditions, including low temperatures, (3) the targeting of native functional groups that can be introduced readily on most proteins, and (4) the use of molecular oxygen as the sole oxidant.
View Article and Find Full Text PDFPalladium-catalyzed cross-coupling reactions have transformed the exploration of chemical space in the search for materials, medicines, chemical probes, and other functional molecules. However, cross-coupling of densely functionalized substrates remains a major challenge. We devised an alternative approach using stoichiometric quantities of palladium oxidative addition complexes (OACs) derived from drugs or drug-like aryl halides as substrates.
View Article and Find Full Text PDFAccess to high quality photoaffinity probe molecules is often constrained by synthetic limitations related to diazirine installation. A survey of recently published photoaffinity probe syntheses identified the Suzuki-Miyaura (S-M) coupling reaction, ubiquitous in drug discovery, as being underutilized to incorporate diazirines. To test whether advances in modern cross-coupling catalysis might enable efficient S-M couplings tolerant of the diazirine moiety, a fragment-based screening approach was employed.
View Article and Find Full Text PDFTwo radical-based approaches have been developed to effect the trifluoromethylation of aryl C-H bonds in native peptides either using stoichiometric oxidant or visible light photoredox catalysis. The reported methods are able to derivatize tyrosine and tryptophan sidechains under biocompatible conditions, and a number of examples are reported involving fully unprotected peptides with up to 51 amino acids. The development of this chemistry adds to the growing array of chemical methods for selectively modifying amino acid residues in the context of complex peptides.
View Article and Find Full Text PDF