The National Transportation Noise Map predicts time-averaged road traffic noise across the continental United States (CONUS) based on annual average daily traffic counts. However, traffic noise can vary greatly with time. This paper outlines a method for predicting nationwide hourly varying source traffic sound emissions called the Vehicular Reduced-Order Observation-based Model (VROOM).
View Article and Find Full Text PDFThe National Transportation Noise Map (NTNM) gives time-averaged traffic noise across the continental United States (CONUS) using annual average daily traffic. However, traffic noise varies significantly with time. This paper outlines the development and utility of a traffic volume model which is part of VROOM, the Vehicular Reduced-Order Observation-based model, which, using hourly traffic volume data from thousands of traffic monitoring stations across CONUS, predicts nationwide hourly varying traffic source noise.
View Article and Find Full Text PDFModeling environmental sound levels over continental scales is difficult due to the variety of geospatial environments. Moreover, current continental-scale models depend upon machine learning and therefore face additional challenges due to limited acoustic training data. In previous work, an ensemble of machine learning models was used to predict environmental sound levels in the contiguous United States using a training set composed of 51 geospatial layers (downselected from 120) and acoustic data from 496 geographic sites from Pedersen, Transtrum, Gee, Lympany, James, and Salton [JASA Express Lett.
View Article and Find Full Text PDFModeling outdoor environmental sound levels is a challenging problem. This paper reports on a validation study of two continental-scale machine learning models using geospatial layers as inputs and the summer daytime A-weighted L as a validation metric. The first model was developed by the National Park Service while the second was developed by the present authors.
View Article and Find Full Text PDFOutdoor acoustic data often include non-acoustic pressures caused by atmospheric turbulence, particularly below a few hundred Hz in frequency, even when using microphone windscreens. This paper describes a method for automatic wind-noise classification and reduction in spectral data without requiring measured wind speeds. The method finds individual frequency bands matching the characteristic decreasing spectral slope of wind noise.
View Article and Find Full Text PDF