Hydrothermal carbonised wastes (hydrochars) can have toxic effects on soil biota, but factors influencing toxin formation in hydrochar, and subsequent toxicity to soil organisms, have not been elucidated. This study investigated the toxicity of hydrochars on soil biota, with a focus on earthworm (Eisenia fetida) avoidance, microbial metabolic quotient (qCO) and microbial activities. Two reaction temperatures (200 °C and 260 °C) and different feedstocks (biosolids, chicken manure and rice straw) were used.
View Article and Find Full Text PDFNatural α-bisabolol has been widely used in cosmetics and is sourced mainly from the stems of Candeia trees that have become endangered due to over exploitation. The in vitro anti-inflammatory activity of cotton gin trash (CGT) essential oil and the major terpenoid (β-bisabolol) purified from the oil were investigated against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages as well as the 3t3 and HS27 fibroblast cell lines.
View Article and Find Full Text PDFSewage sludges are a rich underused source of phosphorus (P) which contributes to environmental degradation, yet if recaptured, could return significant amounts of P to agricultural systems. Hydrothermal carbonisation (HTC) can efficiently recover P, with the added ability to transform P species into potentially more desirable forms for direct application to crops. P dynamics in hydrochars have primarily examined P speciation and chemical extractability as indicators of P bioavailability, but few studies directly evaluate the agronomic effectiveness of hydrochars as P fertilisers.
View Article and Find Full Text PDFCotton gin trash (CGT), a waste product of cotton gins, make up about 10% of each bale of cotton bolls ginned. The current study investigates high value volatile compounds in CGT to add value to this by-product. The volatile compounds in CGT and different parts of the cotton plant were extracted using various methods, identified by gas chromatography-mass spectrometry (GC-MS) or nuclear magnetic resonance (NMR) spectroscopy, and then quantified by gas chromatography-flame ionisation detection (GC-FID) against available standards.
View Article and Find Full Text PDFAlthough cultivated for over 7000 years, mainly for production of cotton fibre, the cotton plant has not been fully explored for potential uses of its other parts. Despite cotton containing many important chemical compounds, limited understanding of its phytochemical composition still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash, this review focuses on phytochemicals associated with different parts of cotton plants and their biological activities.
View Article and Find Full Text PDFUnderstanding the development of the cereal caryopsis holds the future for metabolic engineering in the interests of enhancing global food production. We have developed a Serial Analysis of Gene Expression (SAGE) data platform to investigate the developing wheat (Triticum aestivum) caryopsis. LongSAGE libraries have been constructed at five time-points post-anthesis to coincide with key processes in caryopsis development.
View Article and Find Full Text PDFIncubating cells at 20 degrees C blocks transport out of the Golgi complex and amplifies the exit compartments. We have used the 20 degrees C block, followed by EM tomography and serial section reconstruction, to study the structure of Golgi exit sites in NRK cells. The dominant feature of Golgi structure in temperature-blocked cells is the presence of large bulging domains on the three trans-most cisternae.
View Article and Find Full Text PDF