Eigenvalue problems and linear systems of equations involving large symmetric matrices are commonly solved in quantum chemistry using Krylov space methods, such as the Davidson algorithm. The preconditioner is a key component of Krylov space methods that accelerates convergence by improving the quality of new guesses at each iteration. We systematically design a new preconditioner for time-dependent density functional theory (TDDFT) calculations based on the recently introduced TDDFT-ris semiempirical model by retuning the empirical scaling factor and the angular momenta of a minimal auxiliary basis.
View Article and Find Full Text PDFWe simulate the photodynamics of gas-phase cyclobutanone excited to the S2 state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total photoproduct yield of 8%, with a C3:C2 product ratio of 0 trajectories to 8 trajectories. One primary S2 → S1 conical intersection is identified involving the compression of an α-carbon-carbon-hydrogen bond angle.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2023
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches.
View Article and Find Full Text PDFWe report a minimal auxiliary basis model for time-dependent density functional theory (TDDFT) with hybrid density functionals that can accurately reproduce excitation energies and absorption spectra from TDDFT while reducing cost by about 2 orders of magnitude. Our method, dubbed TDDFT-ris, employs the resolution-of-the-identity technique with just one -type auxiliary basis function per atom for the linear response operator, where the Gaussian exponents are parametrized across the periodic table using tabulated atomic radii with a single global scaling factor. By tuning on a small test set, we determine a single functional-independent scale factor that balances errors in excitation energies and absorption spectra.
View Article and Find Full Text PDFγ-Graphyne is the most symmetric sp/sp allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization.
View Article and Find Full Text PDFJ Chem Phys
November 2021
Computing ab initio molecular linear response properties, e.g., electronic excitation energies and transition dipole moments, requires the solution of large eigenvalue problems or large systems of equations.
View Article and Find Full Text PDFWe report a strategy for the orthogonal conjugation of the vinyl nucleosides, 5-vinyluridine (5-VU) and 2-vinyladenosine (2-VA), via selective reactivity with maleimide and tris(2-carboxyethyl)phosphine (TCEP), respectively. The orthogonality was investigated using density functional theory (DFT) and confirmed by reactions with vinyl nucleosides. Further, these chemistries were used to modify RNA for fluorescent cell imaging.
View Article and Find Full Text PDFTetraphenylazadipyrromethenes (ADPs) are attractive near-infrared (NIR) dyes because of their simple synthesis and exceptional optical and electronic properties. The typical BF and less explored intramolecular BO coordination planarize the molecule, making them promising π-conjugated materials for organic electronic applications. However, their use has been mostly limited to vacuum-deposited devices.
View Article and Find Full Text PDFTrajectory surface hopping simulations of photochemical reactions are a powerful and increasingly important tool to unravel complex photochemical reactivity. Within surface hopping, electronic transitions are mimicked by stochastic hops between electronic potential surfaces. Thus, statistical sampling is an inescapable component of trajectory-surface-hopping-based nonadiabatic molecular dynamics methods.
View Article and Find Full Text PDFTURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods.
View Article and Find Full Text PDFWe report an efficient analytical implementation of first-order nonadiabatic derivative couplings between arbitrary Born-Oppenheimer states in the hybrid time-dependent density functional theory (TDDFT) framework using atom-centered basis functions. Our scheme is based on quadratic response theory and includes orbital relaxation terms neglected in previous approaches. Simultaneous computation of multiple derivative couplings and energy gradients enables efficient multistate nonadiabatic molecular dynamics simulations in conjunction with Tully's fewest switches surface hopping (SH) method.
View Article and Find Full Text PDFOptimized and stringent chemical methods to profile nascent RNA expression are still in demand. Herein, we expand the toolkit for metabolic labeling of RNA through application of inverse electron demand Diels-Alder (IEDDA) chemistry. Structural examination of metabolic enzymes guided the design and synthesis of vinyl-modified nucleosides, which we systematically tested for their ability to be installed through cellular machinery.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2018
We report on the efficient turbomole implementation of quadratic response properties within the time-dependent density functional theory (TDDFT) context that includes the static and dynamic dipole hyperpolarizability, ground-to-excited-state two-photon absorption amplitudes (through a single residue) and state-to-state one-photon absorption amplitudes (through a double residue). Our implementation makes full use of arbitrary (including non-Abelian) point-group symmetry as well as permutational symmetry and enables the calculation of nonlinear properties with hybrid density functionals for molecules with hundreds of atoms and thousands of basis functions at a cost that is a fixed multiple of the cost of the corresponding linear properties. Using the PBE0 hybrid density functional, we show that excited-state absorption spectra computed within the pseudowavefunction approach contain the qualitative features of transient absorption spectra tracking excimer formation in perylene diimide dimers, two-photon absorption cross sections for a series of highly twisted fused porphyrin chains are semiquantitatively reproduced, and the computed dynamic hyperpolarizability of several calix[4]arene stereoisomers yield simulated hyper-Raleigh scattering signals consistent with experiment.
View Article and Find Full Text PDFWe present the first unconstrained nonadiabatic molecular dynamics (NAMD) simulations of photocatalytic water oxidation by small hydrated TiO nanoparticles using Tully surface hopping and time-dependent density functional theory. The results indicate that ultrafast electron-proton transfer from physisorbed water to the photohole initiates the photo-oxidation on the S potential energy surface. The new mechanism readily explains the observation of mobile hydroxyl radicals in recent experiments.
View Article and Find Full Text PDFTransition densities between excited states are key for nonlinear theoretical spectroscopy and multi-state non-adiabatic molecular dynamics (NAMD) simulations. In the framework of response theory, these transition densities are accessible from poles of the quadratic response function. It was shown recently that the thus obtained transition densities within time-dependent Hartree-Fock (TDHF) and adiabatic time-dependent density functional theory (TDDFT) exhibit unphysical divergences when the difference in excitation energy of the two states of interest matches another excitation energy.
View Article and Find Full Text PDFWe report the derivation and implementation of orbital optimization algorithms for the active space decomposition (ASD) model, which are extensions of complete active space self-consistent field (CASSCF) and its occupation-restricted variants in the conventional multiconfiguration electronic-structure theory. Orbital rotations between active subspaces are included in the optimization, which allows us to unambiguously partition the active space into subspaces, enabling application of ASD to electron and exciton dynamics in covalently linked chromophores. One- and two-particle reduced density matrices, which are required for evaluation of orbital gradient and approximate Hessian elements, are computed from the intermediate tensors in the ASD energy evaluation.
View Article and Find Full Text PDFWe extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer.
View Article and Find Full Text PDFWe present ab initio theory and efficient algorithms for computing model Hamiltonians of excited-state dynamics in the quasi-diabatic representation. The method is based on a recently developed multiconfiguration electronic structure method, called the active space decomposition method (ASD), in which quasi-diabatic basis states are constructed from physical fragment states. An efficient tree-based algorithm is presented for computing and reusing intermediate tensors appearing in the ASD model.
View Article and Find Full Text PDFWe suggest the combination of single molecule pulling and optical control as a way to enhance control over the electron transport characteristics of a molecular junction. We demonstrate using a model junction consisting of biphenyl-dithiol coupled to gold contacts. The junction is pulled while optically manipulating the dihedral angle between the two rings.
View Article and Find Full Text PDFWe have developed an active-space decomposition strategy for molecular dimers that allows for the efficient computation of the dimer's complete-active-space wavefunction while only constructing the monomers' active-space wavefunctions. Dimer states are formed from linear combinations of direct products of localized orthogonal monomer states and Hamiltonian matrix elements are computed directly without explicitly constructing the product space. This decomposition is potentially exact in the limit where a full set of monomer states is included.
View Article and Find Full Text PDFWe propose a coherent, strong-field approach to control the torsional modes of biphenyl derivatives, and develop a numerical scheme to simulate the torsional dynamics. By choice of the field parameters, the method can be applied either to drive the torsion angle to an arbitrary configuration or to induce free internal rotation. Transient absorption spectroscopy is suggested as a probe of torsional control and the usefulness of this approach is numerically explored.
View Article and Find Full Text PDF