Context: Genome editing enables the introduction of beneficial sequence variants into the genomes of animals with high genetic merit in a single generation. This can be achieved by introducing variants into primary cells followed by producing a live animal from these cells by somatic cell nuclear transfer cloning. The latter step is associated with low efficiencies and developmental problems due to incorrect reprogramming of the donor cells, causing animal welfare concerns.
View Article and Find Full Text PDFThis study evaluated the influence of feeding low and high preweaning allowances of unpasteurized whole milk (MA) on intake, selected blood metabolites, antibody response, mammary gland growth, and growth of New Zealand (NZ) dairy heifers to 7 mo of age. At 10 ± 2 d of age (study day 0), group-housed (six·pen-1) heifer calves (Holstein-Friesian × Jersey) were allocated to low (4 L whole milk·calf-1·d-1; n = 7 pens) or high (8 L whole milk·calf-1·d-1; n = 7 pens) MA for the next 63 d. Calves were gradually weaned between days 63 ± 2 and 73 ± 2.
View Article and Find Full Text PDFBackground: The quality of forage plants is a crucial component of animal performance and a limiting factor in pasture based production systems. Key forage attributes that may require improvement include the sugar, lipid, protein and energy contents of the vegetative parts of these plants. The aim of this study was to evaluate the potential capacity of hyperspectral imaging (HSI) for non-invasive assessment of forage chemical composition.
View Article and Find Full Text PDFThe fatty acid composition of milk is of considerable interest due to their nutritional and functional properties. Although rapid milk fat separation and transesterification procedures have been developed, the overall procedure remains time consuming, specially, for the analysis of a large number of samples. In this work, a fast and simple method for direct profiling of fatty acids from milk using thermochemolysis has been developed.
View Article and Find Full Text PDF