Proc Natl Acad Sci U S A
February 2017
Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria.
View Article and Find Full Text PDFChanges in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) from young and aged mice.
View Article and Find Full Text PDFThe mitochondrial respiratory chain (RC) produces most of the cellular ATP and requires strict quality-control mechanisms. To examine RC subunit proteostasis in vivo, we measured RC protein half-lives (HLs) in mice by liquid chromatography-tandem mass spectrometry with metabolic [(2)H3]-leucine heavy isotope labeling under divergent conditions. We studied 7 tissues/fractions of young and old mice on control diet or one of 2 diet regimens (caloric restriction or rapamycin) that altered protein turnover (42 conditions in total).
View Article and Find Full Text PDFHigh levels of the flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) have been detected in Pacific salmon sampled near urban areas, raising concern over the safety of salmon consumption. However, salmon fillets also contain the antioxidants eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose oxidation products induce cellular antioxidant responses. Because oxidative stress is a mechanism of BDE 47 toxicity, we hypothesized that oxidized EPA and DHA can ameliorate the cellular and mitochondrial toxicity of BDE 47.
View Article and Find Full Text PDFMitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial-targeted peptide SS-31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour.
View Article and Find Full Text PDFAnesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro demonstrate that both GABA(A) and NMDA receptors are modulated by anesthetics, but whole animal models have not supported the role of these receptors as sole effectors of general anesthesia. Findings in C.
View Article and Find Full Text PDFLeigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with gliosis in several brain regions that usually results in infantile death. Loss of murine Ndufs4, which encodes NADH dehydrogenase (ubiquinone) iron-sulfur protein 4, results in compromised activity of mitochondrial complex I as well as progressive neurodegenerative and behavioral changes that resemble LS. Here, we report the development of breathing abnormalities in a murine model of LS.
View Article and Find Full Text PDFAims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function.
View Article and Find Full Text PDFOxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/-))) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle.
View Article and Find Full Text PDFMitochondrial complex I (CI) is a multi-subunit enzyme that forms the major entry point of nicotinamide adenine dinucleotide (NADH) electrons into the respiratory chain. Mutations in the NDUFS4 gene, encoding an accessory subunit of this complex, cause a Leigh-like phenotype in humans. To study the nature and penetrance of the CI defect in different tissues, we investigated the role of NDUFS4 in mice with fatal mitochondrial encephalomyopathy, caused by a systemic inactivation of the Ndufs4 gene.
View Article and Find Full Text PDFTo explore the lethal, ataxic phenotype of complex I deficiency in Ndufs4 knockout (KO) mice, we inactivated Ndufs4 selectively in neurons and glia (NesKO mice). NesKO mice manifested the same symptoms as KO mice including retarded growth, loss of motor ability, breathing abnormalities, and death by approximately 7 wk. Progressive neuronal deterioration and gliosis in specific brain areas corresponded to behavioral changes as the disease advanced, with early involvement of the olfactory bulb, cerebellum, and vestibular nuclei.
View Article and Find Full Text PDFInhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture.
View Article and Find Full Text PDFTo study effects of mitochondrial complex I (CI, NADH:ubiquinone oxidoreductase) deficiency, we inactivated the Ndufs4 gene, which encodes an 18 kDa subunit of the 45-protein CI complex. Although small, Ndufs4 knockout (KO) mice appeared healthy until approximately 5 weeks of age, when ataxic signs began, progressing to death at approximately 7 weeks. KO mice manifested encephalomyopathy including a retarded growth rate, lethargy, loss of motor skill, blindness, and elevated serum lactate.
View Article and Find Full Text PDFAs dysfunction of cerebral cholinergic neurotransmission is one of the main features in patients with Alzheimer's disease, in vivo imaging of the vesicular acetylcholine transporter (VAChT) can be of great value for the early diagnosis of this disease. Two series of positional isomers of m-iodobenzyltrozamicol (MIBT): 3-hydroxy-4-(N-phenylpiperazinyl)piperidine and 4-hydroxy-3-(N-phenylpiperazinyl)piperidine substituted by benzyl, aryl, alkyl or vinyl groups at the nitrogen have been synthesized. These compounds have been evaluated in vitro by competition studies and five compounds (N-benzyl derivatives) showed high affinity for the VAChT (11nM
Our goal was to synthesize new stereospecific benzovesamicol analogues, which could potentially be used as SPECT or PET radioligands for the vesicular acetylcholine transporter (VAChT). This paper describes the chemical synthesis, resolution and determination of binding affinity for four enantiomeric pairs of derivatives. Their intrinsic affinities were determined by competition against binding of [3H]vesamicol to human VAChT.
View Article and Find Full Text PDF