Publications by authors named "Shane Formica"

Alzheimer's disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia activation in AD. The gene transcriptional product is alternatively spliced to produce three different protein isoforms.

View Article and Find Full Text PDF

Introduction: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis.

Methods: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid β (Aβ) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2.

View Article and Find Full Text PDF

Background: Fractalkine (CXCL1) and its receptor (CXCR1) play an important role in regulating microglial function. We have previously shown that Cxcr1 deficiency exacerbated tau pathology and led to cognitive impairment. However, it is still unclear if the chemokine domain of the ligand CXCL1 is essential in regulating neuronal tau pathology.

View Article and Find Full Text PDF

Recent reports in Alzheimer's disease (AD) research suggest that alterations in microRNA (miRNA) expression are associated with disease pathology. Our previous studies suggest that A Disintegrin and Metalloproteinase 10 (ADAM10) expression is important in AD and could be modulated by an extended regulatory region that includes the 3' untranslated region. In this study, we have investigated the role of trans-acting factors in ADAM10 gene regulation.

View Article and Find Full Text PDF

Background: Genetic variants of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) confer increased risk of developing late-onset Alzheimer's Disease (LOAD) and other neurodegenerative disorders. Recent studies provided insight into the multifaceted roles of TREM2 in regulating extracellular β-amyloid (Aβ) pathology, myeloid cell accumulation, and inflammation observed in AD, yet little is known regarding the role of TREM2 in regulating intracellular microtubule associated protein tau (MAPT; tau) pathology in neurodegenerative diseases and in AD, in particular.

Results: Here we report that TREM2 deficiency leads to accelerated and exacerbated hyperphosphorylation and aggregation of tau in a humanized mouse model of tauopathy.

View Article and Find Full Text PDF
Article Synopsis
  • Neurofibrillary tangles (NFTs) made of hyperphosphorylated tau are a significant feature of Alzheimer's disease (AD), and their formation is influenced by various regulatory factors, including the Fyn protein.
  • Researchers discovered that Fyn protein levels are increased in patients with AD compared to cognitively normal individuals, while Fyn mRNA levels do not show the same increase, indicating a complex regulatory mechanism.
  • The expression of FYN is also affected by specific genetic variants within its regulatory region, suggesting that these variants may contribute to the development of NFTs in AD and related tauopathies.
View Article and Find Full Text PDF