Aggressive clear cell renal cell carcinoma (ccRCC) has a bad prognosis. We seek new ccRCC biomarkers for diagnosis and treatment. We used exoRBase and The Cancer Genome Atlas Database to compare DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs in ccRCC and normal renal tissues.
View Article and Find Full Text PDFThe development of therapeutic resistance in the majority of patients limits the long-term benefit of ROS1 inhibitor treatment. On-target mutations of the ROS1 kinase domain confer resistance to crizotinib and lorlatinib in more than one-third of acquired resistance cases with no current effective treatment option. As an alternative to stoichiometric inhibition, proteolytic degradation of ROS1 could provide an effective tool to combat resistance generated by these mutations.
View Article and Find Full Text PDFCancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties.
View Article and Find Full Text PDFBackground: Renshen Yangrong decoction (RSYRD) has been shown therapeutic effects on secondary malaise and fatigue (SMF). However, to date, its bioactive ingredients and potential targets remain unclear.
Purpose: The purpose of this study is to assess the potential ingredients and targets of RSYRD on SMF through a comprehensive strategy integrating network pharmacology, Mendelian randomization as well as molecular docking verification.
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers.
View Article and Find Full Text PDFThis review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) represents a diverse spectrum of primary tumors notorious for their resistance to established therapeutic modalities. Despite aggressive interventions like surgery, radiation, and chemotherapy, these tumors, due to factors such as the blood-brain barrier, tumor heterogeneity, glioma stem cells (GSCs), drug efflux pumps, and DNA damage repair mechanisms, persist beyond complete isolation, resulting in dismal outcomes for glioma patients. Presently, the standard initial approach comprises surgical excision followed by concurrent chemotherapy, where temozolomide (TMZ) serves as the foremost option in managing GBM patients.
View Article and Find Full Text PDFIntroduction: We previously reported that TRPM7 regulates glioma cells' stemness through STAT3. In addition, we demonstrated that FOSL1 is a response gene for TRPM7, and the FOSL1 gene serves as an oncogene to promote glioma proliferation and invasion.
Methods: In the present study, we determined the effects of FOSL1 on glioma stem cell (GSC) markers CD133 and ALDH1 by flow cytometry, and the maintenance of stem cell activity by extreme limiting dilution assays (ELDA).
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide.
View Article and Find Full Text PDFChidamide, a new chemically structured HDACi-like drug, has been shown to inhibit breast cancer, but its specific mechanism has not been fully elucidated. In this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-seq technique to analyze the gene expression differences of Chidamide-treated breast cancer cells to identify the drug targets of Chidamide's anti-breast cancer effect and to lay the foundation for the development of new drugs for breast cancer treatment. The results showed that the MCF-7 CHID group expressed 320 up-regulated genes and 222 down-regulated genes compared to the control group; Gene Ontology functional enrichment analysis showed that most genes were enriched to biological processes.
View Article and Find Full Text PDFBackground: We aim to assess the efficacy and safety profiles of immune checkpoint inhibitors in patients with metastatic castration-resistant prostate cancer using a meta-analysis.
Methods: We extracted and examined data from phase I, II and III clinical trials from PubMed, Embase, Web of Science, and Cochrane Library, which included patients with metastatic castration-resistant prostate cancer who were treated with immune checkpoint inhibitors. We performed a meta-analysis to investigate several indexes of efficacy and safety, including the objective response rate, 1-year overall survival (OS) rate, prostate-specific antigen response rate, and adverse event rate of immune checkpoint inhibitors.
Breast cancer is one of the leading threats to the health of women. It has the highest incidence and mortality in women worldwide. Although progress has been made in the development and application of anti-breast cancer drugs such as Chidamide and others, the occurrence of drug resistance limits the effective application of chemotherapies.
View Article and Find Full Text PDFGlioblastoma, one of the most fatal brain tumors, is associated with a dismal prognosis and an extremely short overall survival. We previously reported that the overexpressed transient receptor potential channel TRPM7 is an essential glioblastoma regulator. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in glioma's initiation and progression.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most prevalent and aggressive type of adult gliomas. Despite intensive therapy including surgery, radiation, and chemotherapy, invariable tumor recurrence occurs, which suggests that glioblastoma stem cells (GSCs) render these tumors persistent. Recently, the induction of GSC differentiation has emerged as an alternative method to treat GBM, and most of the current studies aim to convert GSCs to neurons by a combination of transcriptional factors.
View Article and Find Full Text PDFFulvestrant-3-boronic acid (ZB716), an oral selective estrogen receptor degrader (SERD) under clinical development, has been investigated in ADME studies to characterize its absorption, metabolism, and pharmacokinetics. ZB716 was found to have high plasma protein binding in human and animal plasma, and low intestinal mucosal permeability. ZB716 had high clearance in hepatocytes of all species tested.
View Article and Find Full Text PDFWe have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2020
PI-103 (7) is a potent dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor, but its rapid in vivo metabolism hinders its further clinical development. To improve the bioavailability of PI-103, we designed and synthesized a PI-103 bioisostere, PI-103BE (9) in which the phenolic hydroxyl group of PI-103 was replaced by a boronate, a structural modification known to enhance bioavailability of molecules containing phenolic hydroxyl moieties. In cell culture, PI-103BE is partially converted to its corresponding boronic acid (10) and to a lesser extent the active ingredient, PI-103.
View Article and Find Full Text PDFPurpose: Selective estrogen receptor degrader (SERD) has proven clinically effective in treating advanced or metastatic breast cancer since the approval of fulvestrant by FDA in 2002. Recent expansion of indications as a first line monotherapy and as combination therapy with CDK4/6 inhibitors further extends its clinical utility as an efficacious breast cancer endocrine regimen. However, the poor pharmacokinetic properties of fulvestrant and its injection-only administration route has driven continued efforts to develop orally bioavailability SERD that could potentially improve clinical response to SERD treatment.
View Article and Find Full Text PDFOur previous findings demonstrate that channel-kinase transient receptor potential (TRP) ion channel subfamily M, member 7 (TRPM7) is critical in regulating human glioma cell migration and invasion. Since microRNAs (miRNAs) participate in complex regulatory networks that may affect almost every cellular and molecular process during glioma formation and progression, we explored the role of miRNAs in human glioma progression by comparing miRNA expression profiles due to differentially expressed TRPM7. First, we performed miRNA microarray analysis to determine TRPM7's miRNA targets upon TRPM7 silencing in A172 cells and validated the miRNA microarray data using A172, U87MG, U373MG, and SNB19 cell lines by stem-loop RT-qPCRs.
View Article and Find Full Text PDFZL277 is a prodrug of belinostat with enhanced bioavailability and efficacy as a pan histone deacetylase (HDAC) inhibitor. In this study, we investigated the metabolism and pharmacokinetics of ZL277 in liver S9 fractions, liver microsomes, liver cytosol, and in mice. Metabolic products were identified and quantified by a combination of liquid chromatography and tandem mass spectrometry.
View Article and Find Full Text PDFHistone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. A series of HDAC inhibitors based on -hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit.
View Article and Find Full Text PDFThirty-eight 3-O-substituted-3',4'-dimethoxyflavonols and twenty-five 3-O-substituted-3',4',7-trimethoxyflavonols have been synthesized for systematic investigation on the structure-activity relationships of 3-O-substituted-3',4'-dimethoxyflavonols in three human prostate cancer cell models. Our findings indicate that incorporation of an appropriate amino group to 3-OH of 3',4'-dimethoxyflavonol and 3',4',7-trimethoxyflavonol through a 3- to 5-carbon linker can substantially improve the in vitro antiproliferative potency in three human prostate cancer cell models, but not in two non-neoplastic human epithelial cell models (MCF 10A and PWR-1E). 1-Methylpiperazine, pyrrolidine, and dibutylamine are optimal terminal amine groups that, in combination with a 3- to 5-carbon linker, are notably beneficial to the anti-proliferative potency of 3-O-substituted-3',4'-dimethoxyflavonols.
View Article and Find Full Text PDF