ACS Appl Mater Interfaces
October 2024
As an emerging electrochemical device, aqueous zinc-ion batteries (ZIBs) present promising potential in safe and large-scale energy storage. However, the large pores of commercial glass fiber (GF) separators result in uneven Zn ion flux, leading to severe dendrite growth issues of Zn metal anodes. Herein, we integrated a multifunctional layer on the GF separator that can synergistically regulate the pore feature and surface property of commercial GF separators.
View Article and Find Full Text PDFDesigning artificial interface is a promising strategy to protect Zn metal anode but achieving long Zn plating/stripping lifespans and efficient nucleation/deposition kinetics, particularly at high current densities, remains a challenge. In this study, a permselective zincophilic heterogeneous interface consisting of metallic Ag layer and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is designed via a simple chemical displacement and drop casting process. The artificial interface plays a multifunctional role in inhibiting dendrite growth/side reactions by reducing the nucleation barrier through a large number of Zn nucleation sites offered by the bottom Ag layer, homogenizing electrical field/Zn flux and shielding SO migration via the compact, conducting, and Zn -permselective PEDOT:PSS supporting layer.
View Article and Find Full Text PDF