Publications by authors named "Shanaz Jahan"

The current research effort demonstrates the ultrasonic-assisted synthesis of highly fluorescent graphene quantum dots (GQDs) of ∼5 nm diameter. First, acid pyrolysis with ultrasonic hydrothermal co-cutting breaks down the coarse graphite into nanometric graphene sheets (GS) and graphene oxide sheets (GOS) with oxygen-rich functionalities. These functionalities were then used to break GOS into graphene oxide nanofibers (GONFs) and graphene oxide quantum dots (GOQDs).

View Article and Find Full Text PDF

Herein, we demonstrate a hydrothermal route to the one-pot synthesis of polymeric mesoporous silica microcubes (P@MSMCs) for the adsorption of heavy metal ions. During the synthesis of P@MSMCs from column silica gel, the roles and combination of the polymer and an etchant were characterized. Moreover, the porosity of P@MSMCs was tailored by adjusting the reaction temperature between 75 °C and 200 °C.

View Article and Find Full Text PDF

The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes.

View Article and Find Full Text PDF

Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media.

View Article and Find Full Text PDF

The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO had a positive effect on plant physiology, resulting in promoted growth.

View Article and Find Full Text PDF

Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities.

View Article and Find Full Text PDF

Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys.

View Article and Find Full Text PDF

Current research efforts have demonstrated the facile hydrothermal oxidative synthetic route to develop highly fluorescent boron/nitrogen co-doped carbon nanodots (CNDs). During this process, N-(4-hydroxyphenyl)glycine served as a source of N doping and a carbon precursor as well, while boric acid H3BO3 is used as an oxidizing agent in the N2 environment. Surface passivation through ultrasonic treatment of CNDs was performed to induce modifications by using various surface passivating agents.

View Article and Find Full Text PDF