Publications by authors named "ShanShan Pei"

Accumulating evidence demonstrates that the "Warburg effect" that glycolysis is enhanced even in the presence of oxygen existed in hematopoietic malignancies, contributing to extracellular acidosis. G-protein coupled receptor 68 (GPR68), as a proton sensing GPCR responding to extracellular acidosis, is expected to play a critical role in hematopoietic malignancies. In the present study, we found that GPR68 was overexpressed in acute myeloid leukemia (AML) cells, and GPR68 deficiency impaired AML cell survival in vitro and cell engraftment in vivo.

View Article and Find Full Text PDF

One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression.

View Article and Find Full Text PDF
Article Synopsis
  • SpliceTransformer (SpTransformer) is a deep-learning framework designed to predict tissue-specific RNA splicing changes related to human diseases using genomic data, outperforming previous prediction methods.
  • It analyzes around 1.3 million genetic variants from the ClinVar database, finding that 60% of pathogenic mutations are linked to splicing alterations, which vary in frequency depending on the tissue type.
  • SpTransformer accurately identifies splicing changes associated with brain diseases and predicts kidney-specific alterations in diabetic nephropathy patients, showcasing its potential for aiding biological and clinical insights into human health conditions.
View Article and Find Full Text PDF

Background: The curriculum system is a central component in achieving the goals and specifications of talent training schemes. However, problems and difficulties exist in curriculum provision due to a lack of curriculum system design logic. This study aimed to investigate the correlation between the university curriculum system and graduate quality and to reveal the design logic of the curriculum system.

View Article and Find Full Text PDF

Introduction: Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA.

Methods: A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study.

View Article and Find Full Text PDF

The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due, at least in part, to drug resistance of leukemia stem cells (LSC). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors can eradicate bpCML LSC. In this study, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with combinations of venetoclax/tyrosine kinase inhibitors.

View Article and Find Full Text PDF

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent.

View Article and Find Full Text PDF

Recently, the WHO-5 and the ICC 2022 criteria have emphasized poor prognosis in AML/MDS patients with multi-hit TP53 mutations, whereas mutated TP53 plays a critical role in tumorigenesis, drawing substantial interest in exploring its biological behaviors. Diverse characteristics of TP53 mutations, including types, VAF, CNVs, allelic status, karyotypes, and concurrent mutations have been extensively studied. Novel potential targets and comprehensive treatment strategies nowadays are under swift development, owing to great advances in technology.

View Article and Find Full Text PDF

The rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the emergence of new variants with different genetic profiles, with important implications for public health. The continued emergence of new variants with unique genetic features and potential changes in biological properties poses significant challenges to public health strategies, vaccine development, and therapeutic interventions. Omicron variants have attracted particular attention due to their rapid spread and numerous mutations in key viral proteins.

View Article and Find Full Text PDF

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent.

View Article and Find Full Text PDF

Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML.

View Article and Find Full Text PDF

Unlabelled: The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC).

View Article and Find Full Text PDF

Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML.

View Article and Find Full Text PDF

Venetoclax+azacitidine is the standard of care for newly-diagnosed patients with acute myeloid leukemia (AML) for whom intensive chemotherapy is inappropriate. Efforts to optimize this regimen are necessary. We designed a clinical trial to investigate two hypotheses: i) higher doses of venetoclax are tolerable and more effective, and ii) azacitidine can be discontinued after deep remissions.

View Article and Find Full Text PDF

The activation of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers pyroptosis proinflammatory cell death in experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanisms of the inflammatory processes of microglia in EAE remain unclear. Our previous studies suggested that interleukin-1 receptor-associated kinase (IRAK)-M down-regulates the toll-like receptor 4/interleukin-1 receptor signaling pathway.

View Article and Find Full Text PDF

Purpose: There are currently limited objective criteria to help assist physicians in determining whether an individual patient with acute myeloid leukemia (AML) is likely to do better with induction with either standard 7 + 3 chemotherapy or targeted therapy with venetoclax plus azacitidine. The study goal was to address this need by developing exploratory clinical decision support methods.

Patients And Methods: Univariable and multivariable analysis as well as comparison of a range of machine learning (ML) predictors were performed using cohorts of 120 newly diagnosed 7 + 3-treated AML patients compared with 101 venetoclax plus azacitidine-treated patients.

View Article and Find Full Text PDF

Venetoclax (ven) plus azacitidine (aza) is the standard of care for patients with newly diagnosed acute myeloid leukemia (AML) who are not candidates for intensive chemotherapy (IC). Some patients who are IC candidates instead receive ven/aza. We retrospectively analyzed patients with newly diagnosed AML who received ven/aza (n = 143) or IC (n = 149) to compare outcomes, seek variables that could predict response to 1 therapy or the other, and ascertain whether treatment recommendations could be refined.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs.

View Article and Find Full Text PDF

Background: Neuromyelitis optica (NMO), multiple sclerosis (MS) and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy are idiopathic inflammatory demyelinating diseases (IIDDs) that mainly present as encephalomyelitis. Heparan sulfate (HS) and hyaluronic acid (HA) are two components of glycocalyx, a carbohydrate-rich layer on the surface of blood vessels that mediates interaction with blood. Degradation of glycocalyx in NMO is poorly understood.

View Article and Find Full Text PDF

Venetoclax with azacitidine (ven/aza) has emerged as a promising regimen for acute myeloid leukemia (AML), with a high percentage of clinical remissions in newly diagnosed patients. However, approximately 30% of newly diagnosed and the majority of relapsed patients do not achieve remission with ven/aza. We previously reported that ven/aza efficacy is based on eradication of AML stem cells through a mechanism involving inhibition of amino acid metabolism, a process which is required in primitive AML cells to drive oxidative phosphorylation.

View Article and Find Full Text PDF

Anti--methyl-d-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune neurological disorder. Osteopontin (OPN) is a secreted multifunctional phosphorylated glycoprotein that regulates various autoimmune and inflammatory diseases, but its diagnostic and prognostic values in anti-NMDAR encephalitis patients remain elusive. This retrospective study aimed to determine the levels of OPN and related cytokines in cerebrospinal fluid (CSF) of anti-NMDAR encephalitis patients and to assess their influence on disease severity so as to evaluate their efficacy as biomarkers for diagnosis and prognosis.

View Article and Find Full Text PDF

Due to the disseminated nature of leukemia, malignant cells are exposed to many different tissue microenvironments, including a variety of extramedullary sites. In the present study, we demonstrate that leukemic cells residing in the liver display unique biological properties and also contribute to systemic changes that influence physiologic responses to chemotherapy. Specifically, the liver microenvironment induces metabolic adaptations via upregulating expression of endothelial lipase in leukemia cells, which not only stimulates tumor cell proliferation through polyunsaturated fatty acid-mediated pathways, but also promotes survival by stabilizing antiapoptotic proteins.

View Article and Find Full Text PDF

We previously demonstrated that leukemia stem cells (LSCs) in de novo acute myeloid leukemia (AML) patients are selectively reliant on amino acid metabolism and that treatment with the combination of venetoclax and azacitidine (ven/aza) inhibits amino acid metabolism, leading to cell death. In contrast, ven/aza fails to eradicate LSCs in relapsed/refractory (R/R) patients, suggesting altered metabolic properties. Detailed metabolomic analysis revealed elevated nicotinamide metabolism in relapsed LSCs, which activates both amino acid metabolism and fatty acid oxidation to drive OXPHOS, thereby providing a means for LSCs to circumvent the cytotoxic effects of ven/aza therapy.

View Article and Find Full Text PDF

Venetoclax-based therapy can induce responses in approximately 70% of older previously untreated patients with acute myeloid leukemia (AML). However, up-front resistance as well as relapse following initial response demonstrates the need for a deeper understanding of resistance mechanisms. In the present study, we report that responses to venetoclax +azacitidine in patients with AML correlate closely with developmental stage, where phenotypically primitive AML is sensitive, but monocytic AML is more resistant.

View Article and Find Full Text PDF