Publications by authors named "Shan-Zheng Yang"

Objective: To determine if DNA excision repair enzymes oxoguanine glycosylase 1 (OGG1) and xeroderma pigmentosum group F protein (XPF) are involved in the pathogenesis of Parkinson's disease (PD) in a cell model.

Methods: PC12 cells were treated with 1-Methyl-4-phenylpyridine ion (MPP(+)) for various periods of time to induce oxidative DNA damage. MTT assay was used to determine cell viability.

View Article and Find Full Text PDF

To study the effect of VEGF overexpression on development of cortical newborn neurons in the brains after stroke, we injected human VEGF(165)-expressive plasmids (phVEGF) into the lateral ventricle of rat brains with a transient middle cerebral artery occlusion (MCAO). An injection of phVEGF significantly promoted angiogenesis (BrdU(+)-von Willebrand's factor(+)) and reduced infarct volume in the rat brain after MCAO. Single labeling of 5'-bromodeoxyuridine (BrdU) and double staining of BrdU with lineage-specific neuronal markers were used to indicate the proliferated cells and maturation of newborn neurons in the brain section of rats at 2, 4, and 8 weeks after MCAO.

View Article and Find Full Text PDF

To study the regional and cellular distribution of xeroderma pigmentosum group A and B (XPA and XPB) proteins, two nucleotide excision repair (NER) factors, in the mammalian brain we used immunohistochemistry and triple fluorescent immunostaining combined with confocal microscope scanning in brain slices of adult rat brain, including the cerebral cortex, striatum, substantia nigra compacta, ventral tegmental area, red nucleus, hippocampus, and cerebellum. Both XPA and XPB proteins were mainly expressed in neurons, because the XPA- or XPB-immunopositive cells were only costained with NeuN, a specific neuronal marker, but not with glial fibrillary acidic acid, a specific astrocyte marker, in the striatum. Furthermore, XPA- and XPB-positive staining were observed in the neuronal nuclei.

View Article and Find Full Text PDF

Double-fluorescence staining was combined with confocal laser scanning microscopy to localize fetal liver kinase-1 (Flk-1) and fms-like tyrosine kinase-1 (Flt-1) in the neonatal rat brain. The results showed that Flk-1 and Flt-1 immunostaining was observed in the cells with neuron-specific enolase, a neuronal marker, and with factor VIII (F VIII), an endothelium marker, but not in cells with glial fibrillary acidic protein (GFAP), a glial marker, of brain sections from rats on postnatal day 7 (P7). This indicates that both vascular endothelial growth factor (VEGF) receptors were distributed in the neurons and the vascular endothelium.

View Article and Find Full Text PDF