Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity.
View Article and Find Full Text PDFSepsis, characterized by systemic inflammation, often leads to end-organ dysfunction, such as acute kidney injury (AKI). Despite of the severity and frequency of septic AKI in clinic, its pathogenesis is still poorly understood. Combined with histopathology evaluations, mortality assessments, biochemical evaluations, reverse transcription (RT) reaction and quantitative real-time PCR, and western blot, H NMR-based metabolomics approach was applied to investigate effects of Huang-Lian-Jie-Du-Decotion (HLJDD), a traditional Chinese medicine prescription, and its four component herbs on lipopolysaccharide (LPS)-induced septic AKI and the underlying mechanism.
View Article and Find Full Text PDF