With the Lipkin-Meshkov-Glick (LMG) model as an illustration, we construct a thermodynamic cycle composed of two isothermal processes and two isomagnetic field processes, and we study the thermodynamic performance of this cycle accompanied by the quantum phase transition (QPT). We find that for a finite particle system working below the critical temperature, the efficiency of the cycle is capable of approaching the Carnot limit when the external magnetic field λ_{1} corresponding to one of the isomagnetic processes reaches the cross point of the ground states' energy level, which can become the critical point of the QPT in the large-N limit. Our analysis proves that the system's energy level crossings at low-temperature limits can lead to a significant improvement in the efficiency of the quantum heat engine.
View Article and Find Full Text PDFPhoton impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency η_{CA}. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons.
View Article and Find Full Text PDF