Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1:5000 newborn males. No cure is currently available, but gene addition therapy, based on the adeno-associated viral (AAV) vector-mediated delivery of microdystrophin transgenes, is currently being tested in clinical trials. The muscles of DMD boys present significant fibrotic and adipogenic tissue deposition at the time the treatment starts.
View Article and Find Full Text PDFAberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle causes muscle deterioration and weakness in Facioscapulohumeral muscular dystrophy (FSHD). Since the presence of a permissive pLAM1 polyadenylation signal is essential for stabilization of DUX4 mRNA and translation of DUX4 protein, disrupting the function of this structure can prevent expression of DUX4. We and others have shown promising results using antisense approaches to reduce DUX4 expression in vitro and in vivo following local intramuscular administration.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD.
View Article and Find Full Text PDFThe human C-type lectin DC-SIGN (CD209) is a significant receptor on the surface of dendritic cells (DCs) - crucial components of host defense that bridge the innate and adaptive immune systems. A range of linear glycopolymers, constructed controlled radical polymerization techniques have been shown to interact with DC-SIGN with affinities in the physiologically active range. However, these first generation glycopolymers possess limited structural definition and their effects on DCs were not known.
View Article and Find Full Text PDFBackground: Contamination of the uterine lumen with bacteria is ubiquitous in cattle after parturition. Some animals develop endometritis and have reduced fertility but others have no uterine disease and readily conceive. The present study tested the hypothesis that postpartum cattle that develop persistent endometritis and infertility are unable to limit the inflammatory response to uterine bacterial infection.
View Article and Find Full Text PDFProblem: Pelvic inflammatory disease and metritis are important causes of infertility in humans and domestic animals. Uterine infection with Escherichia coli in cattle is associated with reduced ovarian follicle growth and decreased estradiol secretion. We hypothesized that this effect could be mediated by the bacterial lipopolysaccharide (LPS) or cytokines such as tumour necrosis factor alpha (TNFalpha).
View Article and Find Full Text PDFEscherichia coli infection of the endometrium causes uterine disease after parturition and is associated with prolonged luteal phases of the ovarian cycle in cattle. Termination of the luteal phase is initiated by prostaglandin F(2alpha) (PGF) from oxytocin-stimulated endometrial epithelial cells. Compared with normal animals, the peripheral plasma of animals with E.
View Article and Find Full Text PDFReprod Biol Endocrinol
November 2008
Background: The endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces.
View Article and Find Full Text PDFExperimental infection with the gamma-herpesvirus bovine herpesvirus 4 (BoHV-4) rarely establishes disease, yet BoHV-4 is commonly associated with uterine disease in cattle. Uterine disease involves co-infection with bacteria such as Escherichia coli, which stimulate the production of prostaglandin E(2) (PGE(2)) by endometrial cells. BoHV-4 replication depends on immediate early 2 (IE2) gene transactivation and, in the present study, PGE(2), E.
View Article and Find Full Text PDFBacterial contamination of the uterine lumen is common in cattle after parturition, often leading to infection and uterine disease. Clinical disease can be diagnosed and scored by examination of the vaginal mucus, which reflects the presence of pathogenic bacteria such as Escherichia coli and Arcanobacterium pyogenes. Viruses may also cause uterine disease and bovine herpesvirus 4 (BoHV-4) is tropic for endometrial cells, causing a rapid cytopathic effect.
View Article and Find Full Text PDFAm J Reprod Immunol
February 2008
Problem: Endometritis after insemination is ubiquitous in the horse and is associated with semen and/or bacteria in the uterus. In up to 40% of horses, inflammation persists causing infertility. An endometrial explant culture was developed to study uterine secretion of prostaglandin F(2alpha) (PGF(2alpha)) in response to physiological and pathological challenge.
View Article and Find Full Text PDFOestrogens are pivotal in ovarian follicular growth, development and function, with fundamental roles in steroidogenesis, nurturing the oocyte and ovulation. Infections with bacteria such as Escherichia coli cause infertility in mammals at least in part by perturbing ovarian follicle function, characterised by suppression of oestradiol production. Ovarian follicle granulosa cells produce oestradiol by aromatisation of androstenedione from the theca cells, under the regulation of gonadotrophins such as FSH.
View Article and Find Full Text PDFBovine postpartum uterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the gamma-herpesvirus bovine herpesvirus 4 (BoHV-4) has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithelial cells.
View Article and Find Full Text PDFProstaglandins have a central role in many endocrine functions in mammals, including regulation of the life span of the corpus luteum by prostaglandin F(2alpha) (PGF) and prostaglandin E2 (PGE), which are secreted by the uterine endometrium. However, the uterus is readily infected with bacteria such as Escherichia coli, which disrupt luteolysis. Immune cells detect E.
View Article and Find Full Text PDFInfluenza A virus infection of mice has been used extensively as a model to investigate the mechanisms of antigen presentation to cytotoxic T lymphocytes (CTL) and the phenomenon of immunodominance in antiviral CTL responses. The different virus-encoded epitopes that are recognized in H-2(b) and H-2(d) mice have been characterized and their relative immunodominance has been well-studied. In H-2(k) mice, four different K(k)-restricted influenza virus epitopes have been described, but the dominance hierarchy of these epitopes is unknown and there is also an uncharacterized D(k)-restricted response against the virus.
View Article and Find Full Text PDF