Urban infrastructure, important for societal functioning, faces challenges from aging assets and increasing service demands. Traditional asset management practices, often conducted in silos, fail to address the interconnected nature of these systems, leading to inefficiencies and heightened system failure risks. This article combines the spatial and temporal aspects of sewer, water, and road networks to facilitate integrated interventions and enable informed decision-making among diverse stakeholders.
View Article and Find Full Text PDFCo-located infrastructure networks such as road, water, and sewer in theory offer the possibility for integrated multi-infrastructure interventions. However, how closely these networks are aligned in space and time determines the practical extent to which such coordinated interventions can be realized. This study quantifies the spatial alignment of the aforementioned infrastructure networks and demonstrates its application for integrated interventions and potential cost savings.
View Article and Find Full Text PDFAssessment of potentially contaminated sites (PCS) can be expensive; hence, simple and less demanding methods and models are required. This work attempts to provide an approach that can aid in selecting the most appropriate model for the PCS. The developed method uses over 100 field site data to evaluate four test models (analytical/empirical) that provide the maximum plume length (L ), which is used as a principal model ranking quantity in this work.
View Article and Find Full Text PDF