Publications by authors named "Shamsi Ebrahimi"

Nanosilica was surface modified with polyaniline and incorporated into polyurethane to form a polymer matrix capable of entrapping a liquid electrolyte and functioning as quasi-solid-state electrolyte in the dye-sensitized solar cells. The effect on the S-PANi distribution, surface morphology, thermal stability, gel content, and structural change after varying the PEG molecular weight of the polyurethane matrix was analyzed. Quasi-solid-state electrolytes were prepared by immersing the polyurethane matrix into a liquid electrolyte and the polymer matrix absorbency, conductivity, and ion diffusion were investigated.

View Article and Find Full Text PDF

Composite scaffolds of hydroxyapatite (HAp) nanoparticles and bioactive glass (BG) were applied as an appropriate selection for bone tissue engineering. To this end, HAp/BG composite was synthesized by a hydrothermal method using Design of Experiments (DOE) with a combined mixture-process factor design for the first time. The input variables were hydrothermal temperature at three levels (i.

View Article and Find Full Text PDF

Composite scaffolds of hydroxyapatite (HAp) nanoparticles and bioactive glass (BG) have been applied as appropriate materials for bone tissue engineering. In this study, hydroxyapatite/bioglass cement in different ratios was successfully fabricated. To prepare HAp and HAp/BG cement, synthesized HAp and HAp/BG powder were mixed in several ratios, using different concentrations of sodium hydrogen phosphate (SP) and water as the liquid phase.

View Article and Find Full Text PDF

Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering.

View Article and Find Full Text PDF

Hydroxyapatite (HAp)-[Ca10 (PO4)6(OH) 2] has a similar chemical composition to bone material, making it the main mineral supplement in bone-making. Due to its high biocompatibility, hydroxyapatite is widely used in the repair of bone deficiencies and in the production of dental or orthopedic implants. In this research, hydroxyapatite nanopowder was synthesized using a hydrothermal technique.

View Article and Find Full Text PDF