A quantum polarized light microscope using entangled NOON states with N=2 and N=3 is shown to provide phase supersensitivity beyond the standard quantum limit. We constructed such a microscope and imaged birefringent objects at a very low light level of 50 photons per pixel, where shot noise seriously hampers classical imaging. The NOON light source is formed by combining a coherent state with parametric down-converted light.
View Article and Find Full Text PDFQuantum lithography achieves phase superresolution using fragile, experimentally challenging entangled states of light. We propose a scalable scheme for creating features narrower than classically achievable with reduced use of quantum resources and, consequently, enhanced resistance to loss. The scheme is an implementation of interferometric lithography using a mixture of a spontaneous parametric down-converted entangled state with intense classical coherent light.
View Article and Find Full Text PDFThe observed intermittent light emission from colloidal semiconductor nanocrystals has long been associated with Auger recombination assisted quenching. We test this view by observing transient emission dynamics of CdSe/CdS/ZnS semiconductor nanocrystals using time-resolved photon counting. The size and intensity dependence of the observed decay dynamics seem inconsistent with those expected from Auger processes.
View Article and Find Full Text PDF