Overheated outdoor environments adversely impact urban sustainability and livability. Urban areas are particularly affected by heat waves and global climate change, which is a serious threat due to increasing heat stress and thermal risk for residents. The tropical city of Darwin, Australia, for example, is especially susceptible to urban overheating that can kill inhabitants.
View Article and Find Full Text PDFThe urban heat island is a vastly documented climatological phenomenon, but when it comes to coastal cities, close to desert areas, its analysis becomes extremely challenging, given the high temporal variability and spatial heterogeneity. The strong dependency on the synoptic weather conditions, rather than on city-specific, constant features, hinders the identification of recurrent patterns, leading conventional predicting algorithms to fail. In this paper, an advanced artificial intelligence technique based on long short-term memory (LSTM) model is applied to gain insight and predict the highly fluctuating heat island intensity (UHII) in the city of Sydney, Australia, governed by the dualistic system of cool sea breeze from the ocean and hot western winds from the vast desert biome inlands.
View Article and Find Full Text PDF