Publications by authors named "Shamil Z Validov"

Article Synopsis
  • Industrialization has led to significant ecological harm, prompting the exploration of sustainable green technologies that utilize microbial processes for environmental cleanup.
  • A specific strain of wheat root-associated bacteria, MGMM7, was studied for its ability to degrade pollutants like crude oil and azo dyes, demonstrating notable effectiveness in reducing these contaminants and promoting plant growth in affected soils.
  • Genomic analysis of MGMM7 revealed its unique genetic profile related to xenobiotic degradation, highlighting its potential for bioremediation in polluted environments.
View Article and Find Full Text PDF

The use of metal and metal oxide nanoparticles is frequently regarded as a potential solution to the issue of bacterial antibiotic resistance. Among the proposed range of nanoparticles with antibacterial properties, copper oxide nanoparticles are of particular interest. Although the antibacterial properties of copper have been known for a considerable period of time, studies on the effects of copper oxide nanomaterials with respect to biological systems have attracted considerable attention in recent years.

View Article and Find Full Text PDF

Microbial biotechnology plays a crucial role in improving industrial processes, particularly in the production of compounds with diverse applications. In this study, we used bioinformatic approaches to analyze the genomic architecture of MGMM6 and identify genes involved in various metabolic pathways that have significant biotechnological potential. Genome mining revealed that MGMM6 consists of a linear chromosome of 6,932,303 bp, with a high G+C content of 73.

View Article and Find Full Text PDF

Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.

View Article and Find Full Text PDF

species have gained much attention based on their phenotypic characteristics and their genetic architecture as biological control agents and plant growth-promotor with bioremediation potential. In this study, we analyzed the whole genome of a novel strain, MGMM1, isolated from the rhizosphere of a weed plant () and assayed its phenotypic characteristics, as well as antifungal and biocontrol ability. The whole genome analysis of MGMM1 identified 4259 putative coding sequences, with an encoding density of 95.

View Article and Find Full Text PDF

Competition for nutrients and niches (CNN) is known to be one of the mechanisms for biocontrol mostly exhibited by strains. Phenotypic and full genome analysis revealed PCL1760 controlling tomato foot and root rot (TFRR) solely through CNN mechanism. Although the availability of nutrients and motility are the known conditions for CNN, persistence of bacteria through dormancy by ribosomal hibernation is a key phenomenon to evade both biotic and abiotic stress.

View Article and Find Full Text PDF

The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments.

View Article and Find Full Text PDF
Article Synopsis
  • RimP is a crucial 17.7 kDa protein necessary for the maturation and efficient processing of the 30S ribosome's 16S rRNA, being involved in early assembly stages.
  • It helps stabilize the central pseudoknot during the initial steps of 30S subunit maturation, although the exact mechanism remains unclear.
  • The study details the chemical shift assignments of RimP from Staphylococcus aureus, revealing its structure, which includes eight β-strands and three α-helices, and aims to facilitate the discovery of selective inhibitors for bacterial translation.
View Article and Find Full Text PDF

Phytopathogenic strains of Fusarium oxysporum Schlecht exhibit clear host specificity, which appears to be a persistent characteristic and a dependable base for the forma specialis system of these pathogens. Here, we report an altered host specificity of the F. oxysporum f.

View Article and Find Full Text PDF

Plant-protecting Bacillus sp. strains used as biocontrol agents frequently produce metabolites inhibiting phytopathogenic fungi. Recently, the search for a novel biocontrol agent with a wide spectrum of disease control drew attention to Bacillus subtilis and their related species, including Bacillus mojavensis.

View Article and Find Full Text PDF
Article Synopsis
  • SaHPF is a factor in Staphylococcus aureus that promotes the formation of 100S ribosome dimers, allowing the bacteria to conserve energy in tough conditions.* -
  • The study determined the crystal structure of the C-terminal domain of SaHPF at high resolution, revealing how the dimer interface is arranged.* -
  • Mutations in specific residues at the dimer interface of SaHPF were shown to prevent ribosome dimerization, highlighting their critical role in the process.*
View Article and Find Full Text PDF

Staphylococcus aureus hibernation promoting factor (SaHPF) is a 22,2 kDa protein which plays a crucial role in 100S Staphylococcus aureus ribosome formation during stress. SaHPF consists of N-terminal domain (NTD) that prevents proteins synthesis by binding to the 30S subunit at the P- and A-sites, connected through a flexible linker with a C-terminal domain (CTD) that keeps ribosomes in 100S form via homodimerization. Recently obtained 100S ribosome structure of S.

View Article and Find Full Text PDF

Ribosome binding factor A (RbfA) is a 14.9 kDa adaptive protein of cold shock, which is important for bacterial growth at low temperatures. RbfA can bind to the free 30S ribosomal subunit and interacts with the 5'-terminal helix (helix I) of 16S rRNA.

View Article and Find Full Text PDF

Elongation Factor P (EF-P) is a 20.5 kDa protein that provides specialized translation of special stalling amino acid motifs. Proteins with stalling motifs are often involved in various processes, including stress resistance and virulence.

View Article and Find Full Text PDF

Staphylococcus aureus: hibernation-promoting factor (SaHPF) is a 22.2 kDa stationary-phase protein that binds to the ribosome and turns it to the inactive form favoring survival under stress. Sequence analysis has shown that this protein is combination of two homolog proteins obtained in Escherichia coli-ribosome hibernation promoting factor (HPF) (11,000 Da) and ribosome modulation factor RMF (6500 Da).

View Article and Find Full Text PDF

Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non-pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f.

View Article and Find Full Text PDF