Publications by authors named "Shameer K"

Background: Therapeutic targets supported by genetic evidence from genome-wide association studies (GWAS) show higher probability of success in clinical trials. GWAS is a powerful approach to identify links between genetic variants and phenotypic variation; however, identifying the genes driving associations identified in GWAS remains challenging. Integration of molecular quantitative trait loci (molQTL) such as expression QTL (eQTL) using mendelian randomization (MR) and colocalization analyses can help with the identification of causal genes.

View Article and Find Full Text PDF

The composition and dynamics of ecological communities are complex because of the presence of large numbers of organisms, belonging to many different species, each with their own evolutionary history, and their numerous interactions. The construction and analysis of trophic webs summarize interactions across trophic levels and link community structure to properties such as ecosystem services. We focus on agroecological communities, which may be simpler than natural communities but nonetheless present considerable challenges to describe and understand.

View Article and Find Full Text PDF

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes, and pathways.

View Article and Find Full Text PDF

The drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine.

View Article and Find Full Text PDF

Target prioritization is essential for drug discovery and repositioning. Applying computational methods to analyze and process multi-omics data to find new drug targets is a practical approach for achieving this. Despite an increasing number of methods for generating datasets such as genomics, phenomics, and proteomics, attempts to integrate and mine such datasets remain limited in scope.

View Article and Find Full Text PDF

Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering.

View Article and Find Full Text PDF

Purpose: Overall survival (OS) is the gold standard end point for establishing clinical benefits in phase III oncology trials. However, these trials are associated with low success rates, largely driven by failure to meet the primary end point. Surrogate end points such as progression-free survival (PFS) are increasingly being used as indicators of biologic drug activity and to inform early go/no-go decisions in oncology drug development.

View Article and Find Full Text PDF

Breast cancer screening using Mammography serves as the earliest defense against breast cancer, revealing anomalous tissue years before it can be detected through physical screening. Despite the use of high resolution radiography, the presence of densely overlapping patterns challenges the consistency of human-driven diagnosis and drives interest in leveraging state-of-art localization ability of deep convolutional neural networks (DCNN). The growing availability of digitized clinical archives enables the training of deep segmentation models, but training using the most widely available form of coarse hand-drawn annotations works against learning the precise boundary of cancerous tissue in evaluation, while producing results that are more aligned with the annotations rather than the underlying lesions.

View Article and Find Full Text PDF

Opioids are a class of drugs that are known for their use as pain relievers. They bind to opioid receptors on nerve cells in the brain and the nervous system to mitigate pain. Addiction is one of the chronic and primary adverse events of prolonged usage of opioids.

View Article and Find Full Text PDF

Combination therapies are an emerging drug development strategy in cancer, particularly in the immunooncology (IO) space. Many combination studies do not meet their safety objectives due to serious adverse events (SAEs). Prediction of SAEs based on evidence from single and combination studies would be highly beneficial.

View Article and Find Full Text PDF
Article Synopsis
  • Interest in using machine learning (ML) for clinical trials is growing, but there’s a lack of comprehensive evidence on its applications.
  • Various stakeholders, including researchers and industry representatives, met to discuss the current status and future potential of ML in clinical research, focusing on its benefits during the different phases of trials.
  • While ML could enhance efficiency and quality in clinical research, significant operational and evidence gaps need to be addressed to overcome existing barriers.
View Article and Find Full Text PDF

Early endpoints, such as progression-free survival (PFS), are increasingly used as surrogates for overall survival (OS) to accelerate approval of novel oncology agents. Compiling trial-level data from randomized controlled trials (RCTs) could help to develop a predictive framework to ascertain correlation trends between treatment effects for early and late endpoints. Through trial-level correlation and random-effects meta-regression analysis, we assessed the relationship between hazard ratio (HR) OS and (1) HR PFS and (2) odds ratio (OR) PFS at 4 and 6 months, stratified according to the mechanism of action of the investigational product.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning is becoming more common in cardiology, especially for cardiovascular imaging, but inconsistencies in model performance and interpretation can arise from the complexity of ML algorithms.
  • This paper builds on existing literature to provide a comprehensive list of responsibilities necessary for developing ML models, aimed at helping researchers and clinicians with uniform reporting of their findings.
  • A multidisciplinary panel of experts created a checklist of requirements to minimize algorithmic errors and biases, highlighting steps to ensure the correct use of ML models, which may evolve as research progresses.
View Article and Find Full Text PDF

MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression.

View Article and Find Full Text PDF

Using a systems biology approach to prioritize potential points of intervention in ovarian cancer, we identified the lysine rich coiled-coil 1 (KRCC1), as a potential target. High-grade serous ovarian cancer patient tumors and cells express significantly higher levels of KRCC1 which correlates with poor overall survival and chemoresistance. We demonstrate that KRCC1 is predominantly present in the chromatin-bound nuclear fraction, interacts with HDAC1, HDAC2, and with the serine-threonine phosphatase PP1CC.

View Article and Find Full Text PDF

Background: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene.

View Article and Find Full Text PDF

Background: Genetic diversity is known to confer survival advantage in many species across the tree of life. Here, we hypothesize that such pattern applies to humans as well and could be a result of higher fitness in individuals with higher genomic heterozygosity.

Results: We use healthy aging as a proxy for better health and fitness, and observe greater heterozygosity in healthy-aged individuals.

View Article and Find Full Text PDF

Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis.

View Article and Find Full Text PDF

Background: Fibrous cap thickness (FCT), best measured by intravascular optical coherence tomography (OCT), is the most important determinant of plaque rupture in the coronary arteries. Statin treatment increases FCT and thus reduces the likelihood of acute coronary events. However, substantial statin-related FCT increase occurs in only a subset of patients.

View Article and Find Full Text PDF

Plants are essential facilitators of human life on planet earth. Plants play a critical functional role in mediating the quality of air, availability of food and the sustainability of agricultural resources. However, plants are in constant interaction with its environment and often hampered by various types of stresses like biotic and abiotic ones.

View Article and Find Full Text PDF

Motivation: Radiologists have used algorithms for Computer-Aided Diagnosis (CAD) for decades. These algorithms use machine learning with engineered features, and there have been mixed findings on whether they improve radiologists' interpretations. Deep learning offers superior performance but requires more training data and has not been evaluated in joint algorithm-radiologist decision systems.

View Article and Find Full Text PDF

Background: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e.

View Article and Find Full Text PDF