Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified.
View Article and Find Full Text PDFBreast Cancer Res Treat
October 2020
Purpose: To examine associations between the UGT2B17 gene deletion and exemestane metabolites, and commonly reported side effects (fatigue, hot flashes, and joint pain) among postmenopausal women participating in the MAP.3 chemoprevention trial.
Methods: The analytical samples for the UGT2B17 analysis comprised 1752 women on exemestane and 1721 women on placebo; the exemestane metabolite analysis included 1360 women on exemestane with one-year serum samples.
The natural product betulin is under investigation for several therapeutic indications, however little is known about its metabolism. In the present study, the glucuronidation and sulfation of betulin in human and rat liver microsomes and cytosol were tested. We further identified the main UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) involved in these two metabolism pathways.
View Article and Find Full Text PDFExemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of estrogen receptor-positive breast cancer. Although the known major metabolic pathway for EXE is reduction to form the active 17-dihydro-EXE (17-DHE) and subsequent glucuronidation to 17-hydroxy-EXE-17-O--D-glucuronide (17-DHE-Gluc), previous studies have suggested that other major metabolites exist for exemestane. In the present study, a liquid chromatography-mass spectrometry (LC-MS) approach was used to acquire accurate mass data in MS mode, in which precursor ion and fragment ion data were obtained simultaneously to screen novel phase II EXE metabolites in urine specimens from women taking EXE.
View Article and Find Full Text PDF4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of this study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
July 2016
Background: The most abundant and potent carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In vivo, NNK is rapidly metabolized to both the (R)- and (S)-enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which possesses similar carcinogenic properties as NNK. The major detoxification pathway for both NNAL enantiomers is glucuronidation by UDP-glucuronosyltransferase (UGT) enzymes including UGT2B10 and UGT2B17.
View Article and Find Full Text PDFContext: There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks.
Objective: The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions.
Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment.
View Article and Find Full Text PDF