Gasdermin D (GSDMD) is the chief executioner of inflammatory cell death or pyroptosis. During pyroptosis, proteolytic processing of GSDMD releases its N-terminal domain (NTD), which then forms large oligomeric pores in the plasma membranes. Membrane pore-formation by NTD allows the release of inflammatory cytokines and causes membrane damage to induce cell death.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2022
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs.
View Article and Find Full Text PDFPore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation.
View Article and Find Full Text PDFPore-forming proteins/toxins (PFPs/PFTs) are the distinct class of membrane-damaging proteins. They act by forming oligomeric pores in the plasma membranes. PFTs and PFPs from diverse organisms share a common mechanism of action, in which the designated pore-forming motifs of the membrane-bound protein molecules insert into the membrane lipid bilayer to create the water-filled pores.
View Article and Find Full Text PDF