Publications by authors named "Shama Ansari"

Endometritis is a uterine inflammatory disease that causes reduced livestock fertility, milk production and lifespan leading to significant economic losses to the dairy industry. Mesenchymal stem cells (MSC) may act as an alternative for inefficacy of antibiotics and rising antibiotic resistance in endometritis. The present study aimed to cure the chronic endometritic buffaloes using allogenic adipose-derived MSCs (AD-MSC).

View Article and Find Full Text PDF

DNA synthesis and methylations are crucial during pre-implantation embryonic development, and are mediated by one-carbon metabolism of folates. Folates, transported into the cells via folate receptors (FOLR1 and FOLR2) and carriers (SLC19A1), are metabolized by various enzymes involved in folate-methionine cycle. However, the variations in temporal expression of folate transporters and folate-methionine cycle enzymes during pre-implantation embryo development is obscure.

View Article and Find Full Text PDF

Subclinical mastitis is an inflammatory disease that affects the milk production, fertility, and lifespan of animals, leading to significant losses to dairy industry. Antibiotics therapies are resulting in suboptimal benefits in treating subclinical mastitis due to prevalent antibiotic resistance in dairy herds. In a quest to develop alternative therapy, umbilical cord-derived mesenchymal stem cells (UCB-MSCs) and its extracellular vesicles (UCB-MSC-EVs) are used, in the present study, to validate its safety and efficacy as potential therapy for treatment of subclinical mastitis in dairy cows with respect to conventional antibiotic therapy (ABT).

View Article and Find Full Text PDF

Background: Leukemia inhibitory factor (LIF) is a multifunctional cytokine which plays multiple roles in different biological processes such as implantation, bone remodeling, and hematopoiesis. The buESCs are difficult to culture due to lack of proper understanding of the culture conditions. LIF is one of the important factors which maintain the pluripotency in embryonic stem cells and commercial LIF from murine and human origin is used in the establishment of buffalo embryonic stem cells (buESCs).

View Article and Find Full Text PDF

Folic acid is vital for DNA synthesis and methylations through one-carbon (C1) metabolism. Thus, it is essential for cell division during embryonic development. Although the oocytes contain endogenous pool of folates for development, the present study investigated the effect of external folic acid supplementation on oocyte maturation, blastocyst development and the expression of folate transporters as well as folate metabolism enzymes in oocytes and pre-implantation embryos of goat.

View Article and Find Full Text PDF

Folate is essential for DNA synthesis and methylation via one-carbon (C1) metabolism during embryonic development. It is transported into the developing oocytes via folate receptors (FOLR1 and FOLR2) and transporters (RFC1) for utilization during embryo development. However, the role of folate receptors during pre-implantation stages of embryos is not well known.

View Article and Find Full Text PDF