Publications by authors named "Shall S"

This chapter describes some of the techniques in use in our laboratories for the investigation of PARP inhibitors in clinical medicine. More specifically, we are involved in investigating the utility of PARP inhibitors in the treatment of hematopoietic malignancies. We are also actively investigating the properties of the PARP systems in cell biology.

View Article and Find Full Text PDF

Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress.

View Article and Find Full Text PDF

Inactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction.

View Article and Find Full Text PDF

This chapter describes some of the techniques in use in our laboratories for the investigation of PARP inhibitors in clinical medicine. More specifically, we are involved in investigating the utility of PARP inhibitors in the treatment of hematopoietic malignancies. We are also actively investigating the properties of the PARP systems in cell biology.

View Article and Find Full Text PDF

Unlabelled: Background Aberrant or impaired repair of double-strand DNA breaks is a common feature of de novo acute myeloid leukemia and myelodysplastic syndromes. Since poly (ADP-ribose) polymerase (PARP) inhibitors have been recently shown to selectively target cells with defects in double-strand DNA repair, the aim of this study was to explore the possibility of exploiting defects in DNA repair in leukemic cells using PARP inhibitors.

Design And Methods: Leukemic cell lines were exposed to various PARP inhibitors alone and in combination with non-cytotoxic concentrations of DNA methyltransferase inhibitor, 5' aza-2'-deoxycytidine and/or the histone deacetylase inhibitor, MS275, to test for potentiation of apoptosis with these agents.

View Article and Find Full Text PDF

Poly ADP-ribose polymerase inhibitors have been shown to target cells with homologous recombination DNA repair defects. We report that poly ADP-ribose polymerase inhibitors induces apoptosis in cells deficient in other key DNA repair components. Chromosomal instability disorders, Fanconi Anemia and Bloom's syndrome have dysfunctional DNA repair and an increased likelihood of leukemic transformation.

View Article and Find Full Text PDF

Werner's syndrome (WS) is an autosomal recessive disorder displaying many features consistent with accelerated ageing. Fibroblasts from WS patients show a distinct mutator phenotype (characterised by the production of large chromosomal deletions) and a profound reduction in proliferative capacity. The disorder results from a mutation in a novel ReqQ helicase.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase (113 kDa; PARP-1) is a constitutive factor of the DNA damage surveillance network developed by the eukaryotic cell to cope with the numerous environmental and endogenous genotoxic agents. This enzyme recognizes and is activated by DNA strand breaks. This original property plays an essential role in the protection and processing of the DNA ends as they arise in DNA damage that triggers the base excision repair (BER) pathway.

View Article and Find Full Text PDF

We have analysed the recircularisation of plasmid DNA, cut with two different endonucleases to generate non-homologous DNA ends, in extracts of unfertilised eggs and oocytes of Xenopus. We found that the capacity to join non-homologous DNA ends, generating diagnostic covalently closed monomer circles, appeared during oocyte maturation at the time of germinal vesicle breakdown. This enzyme function was post-translationally activated in oocyte extracts incubated with unfertilised egg extract containing active cdc2/cyclin B, or by incubation with purified cdc2/cyclin B.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase (PARP) is an abundant nuclear enzyme that is dependent on DNA breaks and nicks for its enzyme activity. These DNA nicks and breaks function as allosteric effectors of the enzyme activity. This reaction is important for efficient DNA base excision repair, although it is not a component of the elementary repair pathway itself.

View Article and Find Full Text PDF

It has been suggested that the limited reproductive life span of normal (diploid) cells in culture may be explained by an inevitable shortening of one or more telomeres. The hypothesis is that one of the shortened telomeres will either generate a specific signal or will invoke a DNA damage checkpoint, in either case causing that cell to leave the cell cycle irreversibly. To assess this hypothesis, I review what constitutes the limited life span of cells in culture.

View Article and Find Full Text PDF

We have purified an arginine-specific mono(ADP-ribosyl)transferase from chicken erythrocytes. The purified transferase was free from poly (ADP-ribose) polymerase activity. The molecular weight of the purified enzyme was estimated to be 27.

View Article and Find Full Text PDF

The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-beta in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1.

View Article and Find Full Text PDF

Integration of proviral DNA into the host cell genome is a characteristic feature of the retroviral life cycle. This process involves coordinate DNA strand break formation and rejoining reactions. The full details of the integration process are not yet fully understood.

View Article and Find Full Text PDF

We have cloned the MADPRT gene encoding the 300-amino-acid mono(ADP-ribosyl)transferase (MADPRT) from chicken erythroblasts. The protein has homology to the rabbit and human skeletal muscle (50% identity) and two chicken heterophil (52% identity) NAD+:arginine MADPRT. The active site region is particularly conserved.

View Article and Find Full Text PDF