Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism.
View Article and Find Full Text PDFPhthalate plasticizers are hazardous compounds capable of causing endocrine disruption, cancers, and developmental disorders. Phthalate diesters are commonly used plasticizers in plastic products (PVC pipes) that leach out into the environment due to changes in temperature, pressure, and pH, posing harmful effects on different life forms. Bioremediation of phthalate diesters utilizing bacterial esterase has been recognized as an efficient approach but few effective esterases capable of degrading a wide range of phthalate diesters have been identified.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
July 2024
Spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds angiotensin-converting enzyme-2 (ACE-2) receptors via its receptor-binding domain (RBD) and mediates virus-to-host cell fusion. Recently emerged omicron variant of SARS-CoV-2 possesses around 30 mutations in spike protein where N501Y tremendously increases viral infectivity and transmission. Lectins interact with glycoproteins and mediate innate immunity displaying antiviral, antibacterial, and anticarcinogenic properties.
View Article and Find Full Text PDFMucopolysaccharidosis Type II (MPS II) is an X-linked recessive genetic disorder that primarily affects male patients. With an incidence of 1 in 100,000 male live births, the disease is one of the orphan diseases. MPS II symptoms are caused by mutations in the lysosomal iduronate-2-sulfatase (IDS) gene.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a retrovirus having genome size of around 30 kb. Its genome contains a highly conserved leader sequence at its 5' end, which is added to all subgenomic mRNAs at their 5' terminus by a discontinuous transcription mechanism and regulates their translation. Targeting the leader sequence by RNA interference can be an effective approach to inhibit the viral replication.
View Article and Find Full Text PDFSARS-CoV-2 main protease (M) cleaves the viral polypeptide 1a and 1ab in a site-specific ((L-Q|(S, A, G)) manner and produce functional enzymes for mediating viral replication. Numerous studies have reported synthetic competitive inhibitors against this target enzyme but increase in substrate concentration often reduces the effectiveness of such inhibitors. Allosteric inhibition by natural compound can provide safe and effective treatment by alleviating this limitation.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2022
The main protease (M) of SARS-CoV-2 is responsible for the cleavage of viral replicase polyproteins 1a and 1ab into their mature form and is highly specific and exclusive in its activity. Many studies have targeted this enzyme by small molecule inhibitors to develop therapeutics against the highly infectious disease Covid-19. Our diet contains many natural antioxidants which along with providing support for proper growth and functioning of the body, pose additional health benefits.
View Article and Find Full Text PDFCancer pathologies are deeply associated with mitochondrial dysfunction. TFAM, transcription factor A of mitochondria plays eminent role in transcription and replication of mtDNA to synthesize different mitochondrial proteins, has been reported to have elevated levels during malignancy and can be a compelling target of the disease. We hypothesize that violacein and silver nanoparticles, as a dyad drug system, can structurally bind and inhibit TFAM at the interface of TFAM-DNA complex during replication and thus can hinder majority of pathways contributing to cancer proliferation.
View Article and Find Full Text PDF