S-Nitrosoglutathione (GSNO) is an endogenous transnitrosation donor involved in S-nitrosation of a variety of cellular proteins, thereby regulating diverse protein functions. Quantitative proteomic methods are necessary to establish which cysteine residues are most sensitive to GSNO-mediated transnitrosation. Here, a competitive cysteine-reactivity profiling strategy was implemented to quantitatively measure the sensitivity of >600 cysteine residues to transnitrosation by GSNO.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2014
The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome.
View Article and Find Full Text PDF