Publications by authors named "Shalisa Hansen"

During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.

View Article and Find Full Text PDF

The first week after birth is a critical time for the establishment of microbial communities for infants. Preterm infants face unique environmental impacts on their newly acquired microbiomes, including increased incidence of cesarean section delivery and exposure to antibiotics as well as delayed enteral feeding and reduced human interaction during their intensive care unit stay. Using contextualized paired metabolomics and 16S sequencing data, the development of the gut, skin, and oral microbiomes of infants is profiled daily for the first week after birth, and it is found that the skin microbiome appears robust to early life perturbation, while direct exposure of infants to antibiotics, rather than presumed maternal transmission, delays microbiome development and prevents the early differentiation based on body site regardless of delivery mode.

View Article and Find Full Text PDF

Preterm infants are at a greater risk for the development of asthma and atopic disease, which can lead to lifelong negative health consequences. This may be due, in part, to alterations that occur in the gut microbiome and metabolome during their stay in the Neonatal Intensive Care Unit (NICU). To explore the differential roles of family history (i.

View Article and Find Full Text PDF

Even high-quality collection and reporting of study metadata in microbiome studies can lead to various forms of inadvertently missing or mischaracterized information that can alter the interpretation or outcome of the studies, especially with nonmodel organisms. Metabolomic profiling of fecal microbiome samples can provide empirical insight into unanticipated confounding factors that are not possible to obtain even from detailed care records. We illustrate this point using data from cheetahs from the San Diego Zoo Safari Park.

View Article and Find Full Text PDF