Upon publication of the original article [1], it was noticed that there is an error in Fig. 10, the dialog box in panel (b) was missing. The correct Fig.
View Article and Find Full Text PDFBackground: Interleukin-1β (IL-1β) is one of the most important cytokine secreted by activated microglia as it orchestrates the vicious cycle of inflammation by inducing the expression of various other pro-inflammatory cytokines along with its own production. Microglia-mediated IL-1β production is a tightly regulated mechanism which involves the activation of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome pathway. Our previous study suggests the critical role of heat shock protein 60 (HSP60) in IL-1β-induced inflammation in microglia through TLR4-p38 MAPK axis.
View Article and Find Full Text PDFBackground: IL-1β, also known as "the master regulator of inflammation", is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1β has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1β are still poorly understood.
View Article and Find Full Text PDFUnlabelled: MicroRNAs (miRNAs) are single-stranded small RNA molecules that regulate various cellular processes. miRNA 155 (miR-155) regulates various aspects of innate and adaptive immune responses and plays a key role in various viral infections and the resulting neuroinflammation. The present study evaluated the involvement of miR-155 in modulating Japanese encephalitis virus (JEV)-induced neuroinflammation.
View Article and Find Full Text PDF