Publications by authors named "Shalini J Rukmani"

Article Synopsis
  • - The study explores the potential of cellulose nanofibrils (CNFs) as eco-friendly materials, highlighting their lightweight and biodegradable properties, making them suitable for next-generation composites and bioplastics.
  • - Atomistic molecular dynamics simulations identified a NaOH and urea aqueous solution as an effective medium to reduce energy consumption during CNF production by about 21% compared to water, while maintaining similar properties.
  • - The findings suggest a new approach for dispersing deprotonable polymers in manufacturing processes, combining computer simulations with pilot-scale experiments to enhance efficiency in the bioeconomy.
View Article and Find Full Text PDF

The efficacy of hydrogel materials used in biomedical applications is dependent on polymer network topology and the structure of water-laden pore space. Hydrogel microstructure can be tuned by adjusting synthesis parameters such as macromer molar mass and concentration. Moreover, hydrogels beyond dilute conditions are needed to produce mechanically robust and dense networks for tissue engineering and/or drug delivery systems.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG)-based nanogels are attractive for biomedical applications due to their biocompatibility, versatile end group chemistry, and ability to sterically shield encapsulated drug molecules. The characteristics of a hydrogel network govern the encapsulation and efficient delivery of drug molecules for a target application. A molecular-level description of network topology can complement experimental investigations to understand its effects on the structural properties of these nanogels.

View Article and Find Full Text PDF

Ionic-functionalized microporous materials are attractive for energy-efficient gas adsorption and separation processes and have shown promising results in gas mixtures at pressure ranges and compositions that are relevant for industrial applications. In this work, we studied the influence of different counterions (Li, Na, K, Rb, and Mg) on the porosity, carbon dioxide (CO) gas adsorption, and selectivity in ionic-functionalized PIM-1 (IonomIMs), a polymer belonging to the class of linear and amorphous microporous polymers known as polymers of intrinsic microporosity (PIMs). It was found that an increase in the concentration of ionic groups led to a decrease in the free volume, resulting in a less porous polymer framework, and Mg-functionalized IonomIMs exhibited a relatively larger porosity compared to other IonomIMs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7463u8eode936vvjca597f4ia2fojmvi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once