Treatment-resistant depression (TRD) occurs in almost 50% of the depressed patients. Central kappa opioid receptor (KOR) agonism has been demonstrated to induce depression and anxiety, while KOR antagonism alleviates depression-like symptoms in rodent models and TRD in clinical studies. Previously, we have shown that sustained KOR activation leads to a TRD-like phenotype in mice, and modulation of brain-derived neurotrophic factor (BDNF) expression in the prefrontal cortex (PFC) appears to be one of the molecular determinants of the antidepressant response.
View Article and Find Full Text PDFBackground: Polymorphisms in the gene encoding for metabotropic glutamate receptor 3 (mGlu) are associated with an increased likelihood of schizophrenia diagnosis and can predict improvements in negative symptoms following treatment with antipsychotics. However, the mechanisms by which mGlu can regulate brain circuits involved in schizophrenia pathophysiology are not clear.
Methods: We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, slice optogenetics, and fiber photometry to investigate the effects of mGlu activation on phencyclidine (PCP)-induced impairments in thalamo-accumbal transmission and sociability deficits.
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms.
View Article and Find Full Text PDFPharmacol Biochem Behav
November 2022
Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS) and abnormalities in the glutamatergic system underlie various CNS disorders. As metabotropic glutamate receptor 3 (mGlu receptor) regulates glutamatergic transmission in various brain areas, emerging literature suggests that targeting mGlu receptors can be a novel approach to the treatment of psychiatric and neurological disorders. For example, mGlu receptor negative allosteric modulators (NAMs) induce rapid antidepressant-like effects in both acute and chronic stress models.
View Article and Find Full Text PDFGlutamate acts at eight metabotropic glutamate (mGlu) receptor subtypes expressed in a partially overlapping fashion in distinct brain circuits. Recent evidence indicates that specific mGlu receptor protomers can heterodimerize and that these heterodimers can exhibit different pharmacology when compared to their homodimeric counterparts. Group III mGlu agonist-induced suppression of evoked excitatory potentials and induction of long-term potentiation at Schaffer collateral-CA1 (SC-CA1) synapses in the rodent hippocampus can be blocked by the selective mGlu negative allosteric modulator (NAM), ADX71743.
View Article and Find Full Text PDFAccumulating evidence of glutamatergic abnormalities in the brains of schizophrenia patients has led to efforts to target various components of glutamatergic signaling as potential new approaches for schizophrenia. Exciting research suggests that metabotropic glutamate (mGlu) receptors could provide a fundamentally new approach for better symptomatic relief in patients with schizophrenia. In preclinical studies, the mGlu receptor positive allosteric modulators (PAMs) show efficacy in animal models relevant for all symptom domains in schizophrenia.
View Article and Find Full Text PDFInhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs.
View Article and Find Full Text PDFThe discovery of robust antidepressant effects of ketamine in refractory patients has led to increasing focus on agents targeting glutamatergic signaling as potential novel antidepressant strategy. Among the agents targeting the glutamatergic system, compounds acting at metabotropic glutamate (mGlu) receptors are among the most promising agents under studies for depressive disorders. Further, the receptor diversity, distinct distribution in the CNS, and ability to modulate the glutamatergic neurotransmission in the brain areas implicated in mood disorders make them an exciting target for stress-related disorders.
View Article and Find Full Text PDFClinical and translational studies suggest that prefrontal cortex (PFC) dysregulation is a hallmark feature of several affective disorders. Thus, investigating the mechanisms involved in the regulation of PFC function and synaptic plasticity could aid in developing new medications. In recent years, the mGlu and mGlu subtypes of metabotropic glutamate (mGlu) receptors have emerged as exciting potential targets for the treatment of affective disorders, as mGlu antagonists exert antidepressant-like effects across many rodent models.
View Article and Find Full Text PDFBackground: Polymorphisms in GRM3, the gene encoding the mGlu metabotropic glutamate receptor, are associated with impaired cognition and neuropsychiatric disorders such as schizophrenia. Limited availability of selective genetic and molecular tools has hindered progress in developing a clear understanding of the mechanisms through which mGlu receptors regulate synaptic plasticity and cognition.
Methods: We examined associative learning in mice with trace fear conditioning, a hippocampal-dependent learning task disrupted in patients with schizophrenia.
The histamine 3 receptor (H3R) is a presynaptic receptor, which modulates several neurotransmitters including histamine and various essential physiological processes, such as feeding, arousal, cognition, and pain. The H3R is considered as a drug target for the treatment of several central nervous system disorders. We have synthesized and identified a novel series of 4-aryl-6-methyl-5,6,7,8-tetrahydroquinazolinamines that act as selective H3R antagonists.
View Article and Find Full Text PDFIsocoumarins are lactone ring-containing natural products, are quite abundant in microbes and higher plants, and have been shown to exhibit a broad range of pharmacological properties. However, the molecular mechanism or target of this class of molecules is not known. In this study, we have synthesized 14 isocoumarin derivatives and evaluated for their activity at TrkB receptor in transiently transfected HEK293T cells.
View Article and Find Full Text PDFThe last two decades of research has established histamine (HA) as a neurotransmitter. Since H3R antagonists are known to modulate several neurotransmitters besides HA, H3R antagonists have shown potential for the treatment of different central nervous system disorders, including depression. However, molecular mechanisms underlying the beneficial effects of H3R antagonism in depression are not clear, yet.
View Article and Find Full Text PDFGPR40 (Free fatty acid receptor 1) has emerged as an important therapeutic target for diabetes. Several studies have demonstrated the association of comorbid psychiatric conditions with decreased n-3 polyunsaturated fatty acids, which may act as an agonist for GPR40. In this study, we for the first time provide evidence of reduced GPR40 signaling in the hippocampus and cortex which may be a critical underlying mechanism mediating cognitive deficits in diabesity (diabetes and obesity together).
View Article and Find Full Text PDFMuscarinic acetylcholine receptors (mAChRs) are important therapeutic targets for several diseases of the central nervous system and periphery. However, the lack of subtype-selective ligands for these receptors is a major challenge. A novel approach involving the integration of a natural product framework with a bioactive molecule (iNPBM) by using gephyrotoxin and the isoindoline framework is demonstrated for the discovery of new and selective mAChR modulators.
View Article and Find Full Text PDFBeta-arrestins (βarrs) critically mediate desensitization, endocytosis and signalling of G protein-coupled receptors (GPCRs), and they scaffold a large number of interaction partners. However, allosteric modulation of their scaffolding abilities and direct targeting of their interaction interfaces to modulate GPCR functions selectively have not been fully explored yet. Here we identified a series of synthetic antibody fragments (Fabs) against different conformations of βarrs from phage display libraries.
View Article and Find Full Text PDFTo obtain selective and potent opioid receptor ligands, we synthesized dehydro derivatives of alvimopan and found compound (28f), a selective but modest affinity MOR antagonist weaker than alvimopan (1). We replaced the arylpiperidine unit by an arylpiperazine to obtain the 1-(α-carboxycinnamyl)-4-arylpiperazines like 13h, which to our surprise had no MOR or DOR activity but was a KOR agonist with moderate affinity. In contrast, literature examples of arylpiperazines 4 and 5 were reported to be pan opioid receptor antagonists, while 6 was a MOR agonist.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) exhibit highly conserved activation and signaling mechanisms by which agonist stimulation leads to coupling of heterotrimeric G proteins and generation of second messenger response. This is followed by receptor phosphorylation, primarily in the carboxyl terminus but also in the cytoplasmic loops, and subsequent binding of arrestins. GPCRs typically recruit arrestins through two different sets of interactions, one involving phosphorylated receptor tail and the other mediated by the receptor core.
View Article and Find Full Text PDFPsychotomimetic and prodepressive effect by kappa opioid receptor (KOR) activation in rodents and human is widely known. Significantly, recent clinical investigations demonstrated the salutary effects of KOR antagonists in patients with treatment resistant depression, indicating essential role of KOR signaling in refractory depression. This study was undertaken to reveal the molecular determinant of KOR mediated depression and antidepressant response of KOR antagonist.
View Article and Find Full Text PDFBackground: Epidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects.
View Article and Find Full Text PDFInt J Biochem Cell Biol
August 2016
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders.
View Article and Find Full Text PDFMethods Cell Biol
December 2016
G protein-coupled receptors (GPCRs) are widely known to modulate almost all physiological functions and have been demonstrated over the time as therapeutic targets for wide gamut of diseases. The design and implementation of high-throughput GPCR-based assays that permit the efficient screening of large compound libraries to discover novel drug candidates are essential for a successful drug discovery endeavor. Usually, GPCR-based functional assays depend primarily on the measurement of G protein-mediated second messenger generation.
View Article and Find Full Text PDFEur J Pharmacol
September 2015
The kappa opioid receptor (k receptor) and its endogenous ligand dynorphin have received significant attention due to their involvement in pathophysiology of mood disorders, drug addiction, psychotic disorders and pain. Multiple lines of evidences suggest that the k receptor modulates overlapping neurocircuits connecting brainstem monoaminergic nuclei with forebrain limbic structures and thereby regulates neurobiological effects of stress and psychostimulants. The emerging concept of "biased agonism" (also known as functional selectivity) for G Protein Coupled Receptor (GPCR) ligands have provided new insights into overall response generated by a ligand, which could be exploited for drug discovery.
View Article and Find Full Text PDFThe sodium-iodide symporter (NIS) is expressed by papillary (PTC) and follicular (FTC) thyroid carcinoma, and is essential for iodine uptake. We hypothesized that PTC and FTC with detectable NIS immunostaining would be more amenable to radioactive iodine ((131)I) treatment and follow a more benevolent course. To test this, we determined NIS expression by immunohistochemistry in 23 PTC, 9 FTC, and 12 benign thyroid lesions from children and adolescents.
View Article and Find Full Text PDF