A series of benzylidene- and phenylethylidene-substituted acridone-2-carbohydrazide derivatives were designed, synthesized and evaluated for their cytotoxicity and response to p-AKT Ser. The structures of the synthesized compounds were confirmed by spectroscopic techniques and evaluated for AKT enzyme inhibition activities. Molecular docking and absorption, distribution, metabolism, elimination and toxicity studies were also performed.
View Article and Find Full Text PDFA series of novel 1,3,4-oxadiazole derivatives with substituted phenyl ring were designed and synthesized with an objective of discovering newer anti-cancer agents targeting thymidine phosphorylase enzyme (TP). The 1,3,4-oxadiazole derivatives were synthesized by simple and convenient methods in the lab. Chemical structure of the all the synthesized compounds were characterized by IR, H NMR and mass spectral methods and evaluated for cytotoxicity by MTT method against two breast cancer cell lines (MCF-7 and MDA-MB-231).
View Article and Find Full Text PDFTelomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation.
View Article and Find Full Text PDFBiomed Pharmacother
March 2019
Patients with chronic non-malignant pain report impairment of physical and social life along with psychological state affecting their overall quality of life. The purpose of managing pain is to reduce the trauma and improve the patient comfort with better quality of life. Tramadol is a centrally acting weak μ-opioid receptor analgesic and is a racemic mixture of (+)-tramadol and (-)-tramadol enantiomers.
View Article and Find Full Text PDFBackground: In past few decades, computational chemistry has seen significant advancements in design and development of novel therapeutics. Benzimidazole derivatives showed promising anti-inflammatory activity through the inhibition of COX-2 enzyme.
Objective: The structural features necessary for COX-2 inhibitory activity for a series of oxadiazole substituted benzimidazoles were explored through 3D-QSAR, combinatorial library generation (Combi Lab) and molecular docking.
A series of novel 1,3,4-oxadiazole-2-thione derivatives were designed, synthesized and evaluated for in vitro anticancer activity against breast cancer (MCF-7) cell line and thymidine phosphorylase. The synthesis of target compounds was performed by cyclization reaction using aromatic amines and carbon disulphide to get mannich bases. The synthesized compound 2j exhibited the most potent anticancer activity against MCF-7 cell line.
View Article and Find Full Text PDFAnticancer Agents Med Chem
February 2018
Cancer is a rapidly growing disease of current era which poses a major life threaten situation to human beings. Continuous research is going on in the direction to develop effective molecules for the treatment of the cancer. These efforts include searching of more active heterocyclic compounds possessing potential anticancer activity.
View Article and Find Full Text PDFFive member heterocyclic 1,3,4-oxadiazole nucleus find unique place in medicinal chemistry and plays significant role in producing anticancer activity. The small and simple 1,3,4-oxadiazole nucleus is present in various compounds involved in research aimed at evaluating new products that posses interesting pharmacological properties such as antitumour activity. Mono and 2,5-di-substituted-1,3,4-oxadiazole derivatives have attracted considerable attention owing to their effective biological activity and extensive use.
View Article and Find Full Text PDF