Publications by authors named "Shalina Taylor"

Pathological high shear stress (HSS, 100 dyn/cm ) is generated in distal pulmonary arteries (PA) (100-500 μm) in congenital heart defects and in progressive PA hypertension (PAH) with inward remodeling and luminal narrowing. Human PA endothelial cells (PAEC) were subjected to HSS versus physiologic laminar shear stress (LSS, 15 dyn/cm ). Endothelial-mesenchymal transition (EndMT), a feature of PAH not previously attributed to HSS, was observed.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2) and persistent pulmonary hypertension.

View Article and Find Full Text PDF

Objective: Mutations in (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH.

View Article and Find Full Text PDF

Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote the expression of homeostatic endothelial genes.

View Article and Find Full Text PDF

The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects.

View Article and Find Full Text PDF

Background: Prognosis in pulmonary arterial hypertension (PAH) is closely related to indexes of right ventricular function. A better understanding of their relationship may provide important implications for risk stratification in PAH.

Research Question: Can clinical network graphs inform risk stratification in PAH?

Study Design And Methods: The study cohort consisted of 231 patients with PAH followed up for a median of 7.

View Article and Find Full Text PDF

Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels.

View Article and Find Full Text PDF

We previously reported heightened expression of the human endogenous retroviral protein HERV-K deoxyuridine triphosphate nucleotidohydrolase (dUTPase) in circulating monocytes and pulmonary arterial (PA) adventitial macrophages of patients with PA hypertension (PAH). Furthermore, recombinant HERV-K dUTPase increased IL-6 in PA endothelial cells (PAECs) and caused pulmonary hypertension in rats. Here we show that monocytes overexpressing HERV-K dUTPase, as opposed to GFP, can release HERV-K dUTPase in extracellular vesicles (EVs) that cause pulmonary hypertension in mice in association with endothelial mesenchymal transition (EndMT) related to induction of SNAIL/SLUG and proinflammatory molecules IL-6 as well as VCAM1.

View Article and Find Full Text PDF

Background: Preclinical evidence implicates neutrophil elastase (NE) in pulmonary arterial hypertension (PAH) pathogenesis, and the NE inhibitor elafin is under early therapeutic investigation.

Research Question: Are circulating NE and elafin levels abnormal in PAH and are they associated with clinical severity?

Study Design And Methods: In an observational Stanford University PAH cohort (n = 249), plasma NE and elafin levels were measured in comparison with those of healthy control participants (n = 106). NE and elafin measurements were then related to PAH clinical features and relevant ancillary biomarkers.

View Article and Find Full Text PDF

Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells.

View Article and Find Full Text PDF
Article Synopsis
  • Acute physical activity triggers significant changes in various biological systems, including metabolic, cardiovascular, and immune responses in the body.!
  • Researchers conducted a detailed analysis of blood samples from 36 volunteers, identifying thousands of molecular changes related to energy metabolism, inflammation, tissue repair, and more after exercise.!
  • Insulin-resistant individuals showed less pronounced responses, leading to the identification of biological pathways that could predict exercise capacity, with potential implications for developing blood-based biomarkers for fitness levels.!
View Article and Find Full Text PDF

Aims: The aims of this study were to evaluate the effects of sodium tanshinone IIA sulfonate (STS) on left ventricular (LV) remodelling after for ST-elevated myocardial infarction (STEMI).

Methods And Results: In this prospective, randomized clinical trial, 101 patients with the ST-elevated MI (STEMI) and a successful reperfusion were immediately randomized to receive STS (80 mg qd for 7 days) or saline control, along with standard therapy. The primary effectiveness endpoint is the % change in LV end diastolic volumes index (%∆ LVEDVi) as measured by echocardiography from baseline to 6 months.

View Article and Find Full Text PDF

Rationale: Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension.

Objective: We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a severe vasculopathy characterized by the presence of fibrotic lesions in the arterial wall and the loss of small distal pulmonary arteries. The vasculopathy is accompanied by perivascular inflammation and increased protease levels, with neutrophil elastase notably implicated in aberrant vascular remodeling. However, the source of elevated elastase levels in PAH remains unclear.

View Article and Find Full Text PDF

In familial pulmonary arterial hypertension (FPAH), the autosomal dominant disease-causing BMPR2 mutation is only 20% penetrant, suggesting that genetic variation provides modifiers that alleviate the disease. Here, we used comparison of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from three families with unaffected mutation carriers (UMCs), FPAH patients, and gender-matched controls to investigate this variation. Our analysis identified features of UMC iPSC-ECs related to modifiers of BMPR2 signaling or to differentially expressed genes.

View Article and Find Full Text PDF

Rationale: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies.

Objectives: Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells.

View Article and Find Full Text PDF

Blood neutrophils perform an essential host-defense function by directly migrating to bacterial invasion sites to kill bacteria. The mechanisms mediating the transition from the migratory to bactericidal phenotype remain elusive. Here, we demonstrate that TRPM2, a trp superfamily member, senses neutrophil-generated reactive oxygen species and restrains neutrophil migration.

View Article and Find Full Text PDF

Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42.

View Article and Find Full Text PDF

Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester-forming polyisoprenylated protein methyl transferase- and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)-catalyzed reactions. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been linked with antitumorigeneis and tumorigenesis, respectively.

View Article and Find Full Text PDF