Publications by authors named "Shalina S Ousman"

Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved.

View Article and Find Full Text PDF

Objective: To develop a standardized model of stretch−crush sciatic nerve injury in mice, and to compare outcomes of crush and novel stretch−crush injuries using standard manual gait and sensory assays, and compare them to both semi-automated as well as deep-learning gait analysis methods. Methods: Initial studies in C57/Bl6 mice were used to develop crush and stretch−crush injury models followed by histologic analysis. In total, 12 eight-week-old 129S6/SvEvTac mice were used in a six-week behavioural study.

View Article and Find Full Text PDF

A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.

View Article and Find Full Text PDF

Background: Inflammation constitutes both positive and negative aspects to recovery following peripheral nerve injury. Following damage to the peripheral nervous system (PNS), immune cells such as macrophages play a beneficial role in creating a supportive environment for regrowing axons by phagocytosing myelin and axonal debris. However, a prolonged inflammatory response after peripheral nerve injury has been implicated in the pathogenesis of negative symptoms like neuropathic pain.

View Article and Find Full Text PDF

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) consists of various autoimmune subtypes in which the peripheral nervous system (PNS) is attacked. CIDP can follow a relapsing-remitting or progressive course where the resultant demyelination caused by immune cells (e.g.

View Article and Find Full Text PDF

Guillain-Barré syndrome (GBS) is a paralyzing autoimmune condition affecting the peripheral nervous system (PNS). Within GBS there are several variants affecting different aspects of the peripheral nerve. In general, there appears to be a role for T cells, macrophages, B cells, and complement in initiating and perpetuating attacks on gangliosides of Schwann cells and axons.

View Article and Find Full Text PDF

The cysteine protease inhibitor Cystatin C (CST3) is highly expressed in the brains of multiple sclerosis (MS) patients and C57BL/6J mice with experimental autoimmune encephalomyelitis (EAE; a model of MS), but its roles in the diseases are unknown. Here, we show that CST3 plays a detrimental function in myelin oligodendrocyte glycoprotein 35-55 (MOG)-induced EAE but only in female animals. Female Cst3 null mice display significantly lower clinical signs of disease compared to wild-type (WT) littermates.

View Article and Find Full Text PDF

By 2050, the aging population is predicted to expand by over 100%. Considering this rapid growth, and the additional strain it will place on healthcare resources because of age-related impairments, it is vital that researchers gain a deeper understanding of the cellular interactions that occur with normal aging. A variety of mammalian cell types have been shown to become compromised with age, each with a unique potential to contribute to disease formation in the aging body.

View Article and Find Full Text PDF

The α7 nicotinic acetylcholine receptor (α7nAChR) is central to the anti-inflammatory function of the vagus nerve in a physiological mechanism termed the inflammatory reflex. Studies on the inflammatory reflex have been instrumental for the current development of the field of bioelectronic medicine. An independent investigation of the biological role of αB-crystallin (HspB5), the most abundant gene transcript present in active multiple sclerosis lesions in human brains, also led to α7nAChR.

View Article and Find Full Text PDF

Although immune attack against central nervous system (CNS) myelin is a central feature of multiple sclerosis (MS), its root cause is unresolved. In this report, we provide direct evidence that subtle biochemical modifications to brain myelin elicit pathological immune responses with radiological and histological properties similar to MS lesions. A subtle myelinopathy induced by abbreviated cuprizone treatment, coupled with subsequent immune stimulation, resulted in lesions of inflammatory demyelination.

View Article and Find Full Text PDF

Neutrophils are essential in the fight against invading pathogens. They utilize antimicrobial effector mechanisms, such as phagocytosis, release of proteases and other antimicrobial products, robust oxidative bursts and neutrophil extracellular traps to combat infections. Neutrophils also modulate immune responses through the production of eicosanoids, cytokines and chemokines, as well as via direct communication with other immune cells.

View Article and Find Full Text PDF

Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective.

View Article and Find Full Text PDF

In an effort to identify factors that contribute to age-related deficits in the undamaged and injured peripheral nervous system (PNS), we noted that Brady and colleagues found that mice null for a small heat shock protein called alphaB-crystallin (αBC) developed abnormalities early in life that are reminiscent of aging pathologies. Because of our observation that αBC protein levels markedly reduce as wild-type mice age, we investigated whether the crystallin plays a role in modulating age-related deficits in the uninjured and damaged PNS. We show here that the presence of αBC correlates with maintenance of myelin sheath thickness, reducing macrophage presence, sustaining lipid metabolism, and promoting remyelination following peripheral nerve injury in an age-dependent manner.

View Article and Find Full Text PDF

AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC.

View Article and Find Full Text PDF

Background: Infection occurs commonly among patients hospitalized after traumatic brain injury (TBI) and has been associated with increased intensive care unit and hospital lengths of stay and an elevated risk of poor neurological outcome and mortality. However, as many relevant published studies to date have varied in the type and severity of TBI among included patients as well as in their design (randomized versus non-randomized), risk of bias, and setting (hospital ward versus intensive care unit), their reported estimates of infection occurrence vary considerably. Thus, the purpose of this systematic review and meta-analysis is to estimate the incidence, prevalence, and occurrence rate of infection among patients hospitalized after TBI.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is often associated with co-morbid behavioural and cognitive impairments; however the presence of these symptoms does not necessarily correlate with neurological damage. This suggests that an alternate mechanism may subserve these impairments relative to motor deficits. We investigated whether these abnormalities could be studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS.

View Article and Find Full Text PDF

Background: Suppression of activation of pathogenic CD4(+) T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS.

Objective: We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease.

View Article and Find Full Text PDF

CRYAB, a small heat shock protein, was previously shown to decrease neuroinflammation in experimental allergic encephalomyelitis (EAE). We investigated whether the expression of cell adhesion molecules and chemokine receptors on peripheral and spinal cord T cells, that could possibly affect their migration to the central nervous system, was altered following EAE CRYAB treatment. Less LFA-1+ lymphocytes and lower levels of iTAC, MCP-5 and MIG were observed in spinal cords of CRYAB-injected EAE animals.

View Article and Find Full Text PDF

To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

The CNS, which consists of the brain and spinal cord, is continuously monitored by resident microglia and blood-borne immune cells such as macrophages, dendritic cells and T cells to detect for damaging agents that would disrupt homeostasis and optimal functioning of these vital organs. Further, the CNS must balance between vigilantly detecting for potentially harmful factors and resolving any immunological responses that in themselves can create damage if left unabated. We discuss the physiological roles of the immune sentinels that patrol the CNS, the molecular markers that underlie their surveillance duties, and the consequences of interrupting their functions following injury and infection by viruses such as JC virus, human immunodeficiency virus, herpes simplex virus and West Nile virus.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis that is executed in animals by immunization with myelin Ag in adjuvant. The SJL/J autoimmune-prone strain of mouse has been used to model relapsing-remitting multiple sclerosis. However, significant variations in peak scores, timing of onset, and incidence are observed among laboratories, with the postacute (relapse) phase of the disease exhibiting significant inconsistency.

View Article and Find Full Text PDF

Cognition and behavior primarily arise from the communication that occurs between brain cells. By using photoconductive stimulation to trigger localized regions of neuronal action potentials and astrocyte Ca(2+) waves in dissociated rat hippocampal cultures, we can directly study microglia behavior in response to physiological and pathological levels of activity. Connections between neurons can be modified by microglia, which regulate gap junctions and synapses through secretion of proteins such as cytokines, proteases and neurotrophic factors.

View Article and Find Full Text PDF

Understanding the neuropathology of multiple sclerosis (MS) is essential for improved therapies. Therefore, identification of targets specific to pathological types of MS may have therapeutic benefits. Here we identify, by laser-capture microdissection and proteomics, proteins unique to three major types of MS lesions: acute plaque, chronic active plaque and chronic plaque.

View Article and Find Full Text PDF