Publications by authors named "Shalaev V"

Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN).

View Article and Find Full Text PDF

The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.

View Article and Find Full Text PDF
Observation of the decay.

Eur Phys J C Part Fields

October 2024

Using proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .

View Article and Find Full Text PDF

A search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of sqrt[s]=13  TeV, corresponding to an integrated luminosity of 138  fb^{-1}. Jets are reconstructed with the anti-k_{T} algorithm with a distance parameter of 0.

View Article and Find Full Text PDF

Single photon emitters (SPEs) in hexagonal boron nitride (hBN) are elementary building blocks for room-temperature on-chip quantum photonic technologies. However, fundamental challenges, such as slow radiative decay and nondeterministic placement of the emitters, limit their full potential. Here, we demonstrate large-area arrays of plasmonic nanoresonators (PNRs) for Purcell-induced room-temperature SPEs by engineering emitter-cavity coupling and enhancing radiative emission.

View Article and Find Full Text PDF

Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes, lasers and quantum technologies, among others.

View Article and Find Full Text PDF
Article Synopsis
  • Demand for computing power in major scientific experiments, like the CMS at CERN, is expected to significantly increase over the coming decades.
  • The implementation of coprocessors, particularly GPUs, in data processing workflows can enhance performance and efficiency, especially for machine learning tasks.
  • The Services for Optimized Network Inference on Coprocessors (SONIC) approach allows for improved use of coprocessors, demonstrating successful integration and acceleration of workflows across various environments without sacrificing throughput.
View Article and Find Full Text PDF

Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of sqrt[s]=13  TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3  fb^{-1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom.

View Article and Find Full Text PDF

The production of ϒ(2S) and ϒ(3S) mesons in lead-lead (Pb-Pb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The ϒ(3S) meson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb and pp collisions are reported for both the ϒ(2S) and ϒ(3S) mesons, as functions of transverse momentum and Pb-Pb collision centrality.

View Article and Find Full Text PDF

The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138  fb^{-1} at sqrt[s]=13  TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.

View Article and Find Full Text PDF
Article Synopsis
  • * The measurements utilized both semileptonic and hadronic decays of top quarks, along with events focused on single top quark production in the electroweak t channel.
  • * The combined result for the top quark mass is 172.52 GeV, with a reduced total uncertainty of 0.33 GeV, showcasing an improvement of 31% over previous measurements.
View Article and Find Full Text PDF

A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138  fb^{-1}. Candidate events are selected by requiring two oppositely charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark.

View Article and Find Full Text PDF

Layered metal-halide perovskites, or two-dimensional perovskites, can be synthesized in solution, and their optical and electronic properties can be tuned by changing their composition. We report a molecular templating method that restricted crystal growth along all crystallographic directions except for [110] and promoted one-dimensional growth. Our approach is widely applicable to synthesize a range of high-quality layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions.

View Article and Find Full Text PDF

A search for exotic decays of the Higgs boson () with a mass of 125 to a pair of light pseudoscalars is performed in final states where one pseudoscalar decays to two quarks and the other to a pair of muons or leptons. A data sample of proton-proton collisions at corresponding to an integrated luminosity of 138 recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds.

View Article and Find Full Text PDF

Dimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demonstrate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense ensemble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs reveal an effective dimensionality reduction to d[over ¯]=2.

View Article and Find Full Text PDF

The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138  fb^{-1} is presented. The observed (expected) significance is 5.6 (5.

View Article and Find Full Text PDF

A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13  TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135  fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst)  MeV.

View Article and Find Full Text PDF

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost.

View Article and Find Full Text PDF

The first search for scalar leptoquarks produced in τ-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb^{-1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays.

View Article and Find Full Text PDF

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138  fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed.

View Article and Find Full Text PDF

The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018.

View Article and Find Full Text PDF

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/ψ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W_{γN}^{Pb}) over a wide range of 40 View Article and Find Full Text PDF

Article Synopsis
  • Metasurfaces are advanced materials engineered at the nanoscale, allowing for precise control over light and enabling various applications like imaging, sensing, and energy conversion, particularly in solar energy.
  • They work by manipulating the optical spectrum through the design of nanoresonators' geometry and material, which enhances their effectiveness in solar energy harvesting.
  • The review discusses foundational aspects of solar energy conversion, the types of metasurfaces, design methodologies, and showcases their applications in areas like photovoltaics and thermal energy, emphasizing their potential to advance sustainable energy solutions.
View Article and Find Full Text PDF