ACS Appl Mater Interfaces
May 2023
Durability of a lubricant-infused surface (LIS) is critical for heat transfer, especially in condensation-based applications. Although LIS promotes dropwise condensation, each departing droplet condensate acts as a lubricant-depleting agent due to the formation of wetting ridge and cloaking layer around the condensate, thus gradually leading to drop pinning on the underlying rough topography. Condensation heat transfer further deteriorates in the presence of non-condensable gases (NCGs) requiring special experimental arrangements to eliminate NCGs due to a decrease in the availability of nucleation sites.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2022
Hypothesis: Transpiration occurs in 100 m tall redwood trees where water is passively pulled against gravity requiring the evaporating liquid meniscus in stomata pores to be under absolute negative pressures of -10 atm or higher. Disjoining pressure can significantly reduce pressure at meniscus in nanopores due to strong surface-liquid molecular interaction. Hence, disjoining pressure should be able to solely govern the transpiration process.
View Article and Find Full Text PDFThe disjoining pressure of water was estimated from wicking experiments in 1D silicon dioxide nanochannels of heights of 59, 87, 124, and 1015 nm. The disjoining pressure was found to be as high as ∼1.5 MPa while exponentially decreasing with increasing channel height.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Droplet wicking and evaporation in porous nanochannels is experimentally studied on a heated surface at temperatures ranging from 35 to 90 °C. The fabricated geometry consists of cross-connected nanochannels of height 728 nm with micropores of diameter 2 μm present at every channel intersection; the pores allow water from a droplet placed on the top surface to wick into the channels. Droplet volume is also varied, and a total of 16 experimental cases are conducted.
View Article and Find Full Text PDFCross-connected buried nanochannels of height ∼728 nm, with micropores of ∼2 μm diameter present at each intersection, are used in this work to numerically and experimentally study droplet-coupled evaporation dynamics at room temperature. The uniformly structured channels/pores, along with their well-defined porosity, allow for computational fluid dynamics simulations and experiments to be performed on the same geometry of samples. A water droplet is placed on top of the sample causing water to wick into the nanochannels through the micropores.
View Article and Find Full Text PDFIn this work, molecular dynamics simulations show that liquid in a nanopore can be at thermodynamically stable high pressure even when connected to conventional bulk liquid. Such high pressure is associated with strong surface-liquid interaction. Evaporation of liquid in the pore creates a flow from the low pressure (bulk) region to the high pressure (nanopore) region.
View Article and Find Full Text PDFPool boiling is explicitly coupled with nanoscale evaporation by using buried nanochannels of height ∼728 nm and ∼100 nm to enhance critical heat flux (CHF) by ∼105%. Additional menisci and contact line formation in nanochannels are found to be the dominant factors of CHF enhancement. Wicking assists in creating the additional contact line but does not serve as the primary measurable factor in predicting such enhancement based on CFD simulations and wicking experiments.
View Article and Find Full Text PDFThe microlayer thin film is visualized in situ in a vapor bubble during pool boiling. Contrary to current understanding, bubbles originate on hydrophilic and silane-coated hydrophobic surfaces without a three-phase contact line, i.e.
View Article and Find Full Text PDFTwo-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
View Article and Find Full Text PDFFor over five decades, an enhancement in pool boiling heat transfer has been achieved by altering the surface wetting, wickability, roughness, nucleation site density, and providing separate liquid/vapor pathways. In this work, a new enhancement mechanism based on the early evaporation of the microlayer is discovered and validated. The microlayer is a thin liquid film present at the base of a vapor bubble.
View Article and Find Full Text PDFPassive liquid flow occurs in nature in the transport of water up tall trees and is desired for high-heat flux removal in thermal management devices. Typically, liquid-vapor surface tension is used to generate passive flows (e.g.
View Article and Find Full Text PDFBoiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source.
View Article and Find Full Text PDFA novel surface-heating algorithm for water is developed for molecular dynamics simulations. The validated algorithm can simulate the transient behavior of the evaporation of water when heated from a surface, which has been lacking in the literature. In this work, the algorithm is used to study the evaporation of water droplets on a platinum surface at different temperatures.
View Article and Find Full Text PDFThe subnanometer pore structure of zeolites and other microporous materials has been proposed to act as a molecular sieve for various water separation technologies. However, due to the increased interaction between the solid and water in these nanoconfined spaces, it is unclear which type of interface, be it hydrophilic or hydrophobic, offers an advantageous medium for enhancing transport properties. In this work, we probe the role of hydrophilic defects on the transport of water inside the microporous hydrophobic MFI zeolite pore structure via combined sorption and high-pressure infiltration experiments.
View Article and Find Full Text PDFGraphene, an atomically thin two-dimensional material, has received significant attention due to its extraordinary electronic, optical, and mechanical properties. Studies focused on understanding the wettability of graphene for thermo-fluidic and surface-coating applications, however, have been sparse. Meanwhile, wettability results reported in literature via static contact angle measurement experiments have been contradictory and highlight the lack of clear understanding of the underlying physics that dictates wetting behavior.
View Article and Find Full Text PDFNanoscale Res Lett
January 2011
This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases.
View Article and Find Full Text PDFA novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid.
View Article and Find Full Text PDF