Introduction: Patellofemoral pain syndrome (PFPS) is prevalent in physically active people. The multifactorial nature of PFPS necessitates multimodal treatment for this condition. The present study aimed to compare the efficacy of lumbopelvic manipulation alone versus manipulation plus dry needling in physically active patients with PFPS.
View Article and Find Full Text PDFPotentiometric ion-selective electrodes (ISEs) have broad applications in personalized healthcare, smart agriculture, oil/gas exploration, and environmental monitoring. However, high-precision potentiometric sensing is difficult with field-deployed sensors due to time-dependent voltage drift and the need for frequent calibration. In the laboratory setting, these issues are resolved by repeated calibration by measuring the voltage response at multiple standard solutions at a constant temperature.
View Article and Find Full Text PDFA long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.
View Article and Find Full Text PDFFor a continuous healthcare or environmental monitoring system, it is essential to reliably sense the analyte concentration reported by electrochemical sensors. However, environmental perturbation, sensor drift, and power-constraint make reliable sensing with wearable and implantable sensors difficult. While most studies focus on improving sensor stability and precision by increasing the system's complexity and cost, we aim to address this challenge using low-cost sensors.
View Article and Find Full Text PDFSmart manufacturing systems are considered the next generation of manufacturing applications. One important goal of the smart manufacturing system is to rapidly detect and anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils down to detecting anomalies within the sensor data acquired from the system which has different characteristics with respect to the operating point of the environment or machines, such as, the RPM of the motor.
View Article and Find Full Text PDFRev Sci Instrum
October 2022
Thermoreflectance (TR) imaging enables non-contact thermal imaging of devices and integrated circuits (ICs) with sub-µm spatial resolution. TR coefficient of most metals and semiconductors in visible wavelengths is in the 10 to 10 K range, which gives a temperature resolution of 0.1-0.
View Article and Find Full Text PDFOriginally developed for use in controlled laboratory settings, potentiometric ion-selective electrode (ISE) sensors have recently been deployed for continuous, in situ measurement of analyte concentration in agricultural (e.g., nitrate), environmental (e.
View Article and Find Full Text PDFThe dynamics of optical nonlinearity in the presence of gain and feedback can be complex leading to chaos in certain regimes. Temporal, spectral, spatial, or polarization instability of optical fields can emerge from chaotic response of an optical [Formula: see text] or [Formula: see text] nonlinear medium placed between two cavity mirrors or before a single feedback mirror. The complex mode dynamics, high-order correlations, and transition to instability in these systems are not well known.
View Article and Find Full Text PDFPrecision Agriculture (PA) is an integral component of the contemporary agricultural revolution that focuses on enhancing food productivity in proportion to the increasing global population while minimizing resource waste. While the recent advancements in PA, such as the integration of IoT (Internet of Things) sensors, have significantly improved the surveillance of field conditions to achieve high yields, the presence of batteries and electronic chips makes them expensive and non-biodegradable. To address these limitations, for the first time, we have developed a fully Degradable Intelligent Radio Transmitting Sensor (DIRTS) that allows remote sensing of subsoil volumetric water using drone-assisted wireless monitoring.
View Article and Find Full Text PDFBreast cancer is the most serious cause of women's death throughout the world. Using nanocarrier vehicles to the exact site of cancer upgrades the therapeutic efficiency of the drugs. Capsulation of active proteins in the vesicular liposomes' hydrophilic core is essential to develop a therapeutic protein carrier system.
View Article and Find Full Text PDFTraditional Potentiometric Ion-selective Electrodes (ISE) are widely used in industrial and clinical settings. The simplicity and small footprint of ISE have encouraged their recent adoption as wearable/implantable sensors for personalized healthcare and precision agriculture, creating a new set of unique challenges absent in traditional ISE. In this paper, we develop a fundamental physics-based model to describe both steady-state and transient responses of ISE relevant for wearable/implantable sensors.
View Article and Find Full Text PDFFollowed by developing modern medicine, leeches did not have extensive use as before; however, in the late 19th century, they were still used in most countries all over the world. Thus far, leeches were utilized in treating various diseases like skin disorders, arthritis, and cancer. In Egypt, using leeches for treatment dates back to early 1500 BC.
View Article and Find Full Text PDFProprotein convertase subtilisin/kexin type 9 (PCSK9), as a vital modulator of low-density lipoprotein cholesterol (LDL-C) , is raised in hepatocytes and released into plasma where it binds to LDL receptors (LDLR), leading to their cleavage. PCSK9 adheres to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR which is confirmed by crystallography. LDLR expression is adjusted at the transcriptional level through sterol regulatory element binding protein 2 (SREBP-2) and at the post translational stages, specifically through PCSK9, and the inducible degrader of the LDLR PCSK9 inhibition is an appealing new method for reducing the concentration of LDL-C.
View Article and Find Full Text PDFThe prior theoretical model shows that GaSb is one of the few non-alloy semiconductors showing phonons ballistic effect in the thermal conductivity. However, no previous literature had been reported on the experimental measurements on the quasi-ballistic thermal transport of the GaSb thin film. In this paper, we employed the time-domain thermoreflectance (TDTR) to study the thermal transport of nanoparticles embedded GaSb thin film.
View Article and Find Full Text PDFIn this article, we show how relativistic α-stable processes can be used to explain quasiballistic heat conduction in semiconductors. This is a method that can fit experimental results of ultrafast laser heating in alloys. It also provides a connection to a rich literature on the Feynman-Kac formalism and random processes that transition from a stable Lévy process on short time and length scales to the Brownian motion at larger scales.
View Article and Find Full Text PDFNon-uniform self-heating and temperature hotspots are major concerns compromising the performance and reliability of submicron electronic and optoelectronic devices. At deep submicron scales where effects such as contact-related artifacts and diffraction limits accurate measurements of temperature hotspots, non-contact thermal characterization can be extremely valuable. In this work, we use a Bayesian optimization framework with generalized Gaussian Markov random field (GGMRF) prior model to obtain accurate full-field temperature distribution of self-heated metal interconnects from their thermoreflectance thermal images (TRI) with spatial resolution 2.
View Article and Find Full Text PDFBiomed Chromatogr
January 2020
Hyaluronidase (Hyal) can be employed to accomplish a diversity of complications related to hyaluronic acid (HA). Hyal contains some classes of catalysts that cleave HA. This enzyme is detected in several human tissues as well as in animal venoms, pathogenic organisms and cancers.
View Article and Find Full Text PDFInfrared (IR) imaging has become a viable tool for visualizing various chemical bonds in a specimen. The performance, however, is limited in terms of spatial resolution and imaging speed. Here, instead of measuring the loss of the IR beam, we use a pulsed visible light for high-throughput, widefield sensing of the transient photothermal effect induced by absorption of single mid-IR pulses.
View Article and Find Full Text PDFThe field of thermoplasmonics has thrived in the past decades because it uniquely provides remotely controllable nanometer-scale heat sources that have augmented numerous technologies. Despite the extensive studies on steady-state plasmonic heating, the dynamic behavior of the plasmonic heaters in the nanosecond regime has remained largely unexplored, yet such a time scale is indeed essential for a broad range of applications such as photocatalysis, optical modulators, and detectors. Here, we use two distinct techniques based on the temperature-dependent surface reflectivity of materials, optical thermoreflectance imaging (OTI) and time-domain thermoreflectance (TDTR), to comprehensively investigate plasmonic heating in both spatial and temporal domains.
View Article and Find Full Text PDFSpace-coiling acoustic metasurfaces have been largely exploited and shown their outstanding wave manipulation capacity. However, they are complex in realization and cannot directly manipulate acoustic near-fields by controlling the effective path length. Here, we propose a comprehensive paradigm for acoustic metasurfaces to extend the wave manipulations to both far- and near-fields and markedly reduce the implementation complexity with a simple structure, which consists of an array of deep-subwavelength-spaced slits perforated in a thin plate.
View Article and Find Full Text PDFA low-cost poly(ethyleneimine)-cobalt (PEI-Co) complex solution with high O2 absorption capacity (as high as 1.5 L O2 (STP)/L solution) was developed and used in a bio-mimetic system to produce high-purity O2 from air. An oxygen concentration greater than 99.
View Article and Find Full Text PDFConventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of SiGe and InGaAs alloys.
View Article and Find Full Text PDFThe concentration of heavy metals was determined in tissues of oyster, Saccostrea cuccullata, phytoplanktons and water samples from intertidal regions of the Chabahar bay, Oman sea. Oysters were collected from 5 stations and during spring, summer and autumn seasons. The heavy metals content in oysters, planktons and water samples showed variations depending on season, sampling station and size of the oysters.
View Article and Find Full Text PDFUnderstanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric.
View Article and Find Full Text PDFThe so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec at room temperature and therefore precludes lowering of the supply voltage and overall power consumption . Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier . Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel .
View Article and Find Full Text PDF