Publications by authors named "Shakir Ali Siddiqui"

Due to the recent surge in antibiotic resistance, developing novel antibiotics is the demand of the time, and thus, a precise understanding of the catalytic mechanisms of enzymes involved in antibiotic biosynthesis becomes crucial. Here, we present a comprehensive investigation into the catalytic mechanism of TokK, a freshly characterized B-dependent RSMT enzyme that plays an important role in carbapenem biosynthesis. Using MD simulations, we show how the plasticity of the active site facilitates substrate recognition while the quantum mechanics/molecular mechanics calculations provide a detailed mechanistic understanding of the methyl transfer process, elucidating stereochemical preferences.

View Article and Find Full Text PDF

Designing efficient catalysts is one of the ultimate goals of chemists. In this Perspective, we discuss how local electric fields (LEFs) can be exploited to improve the catalytic performance of supramolecular catalysts, such as enzymes. More specifically, this Perspective starts by laying out the fundamentals of how local electric fields affect chemical reactivity and review the computational tools available to study electric fields in various settings.

View Article and Find Full Text PDF

The present work outlines a general methodology for designing efficient catalytic machineries that can easily be tweaked to meet the demands of the target reactions. This work utilizes a principle of the designed local electric field (LEF) as the driver for an efficient catalyst. It is demonstrated that by tweaking the LEF, we can catalyze the desired hydroxylation products with enantioselectivity that can be changed at will.

View Article and Find Full Text PDF

Applications of photochemistry are becoming very popular in modern-day life due to its operational simplicity, environmentally friendly and economically sustainable nature in comparison to thermochemistry. In particular photoinduced radical polymerisation (PRP) reactions are finding more biological applications and especially in the areas of dental restoration processes, tissue engineering and artificial bone generation. A type-II photoinitiator and co-initiator-promoted PRP turned out to be a cost-effective protocol, and herein we report the design and synthesis of a new efficient co-initiator for a PRP reaction via a barrierless sequential conjugate addition reaction.

View Article and Find Full Text PDF

Alkylating agents pose the biggest threat to the genomic integrity of cells by damaging DNA bases through regular alkylation. Such damages are repaired by several automated types of machinery inside the cell. O6-alkylguanine-DNA alkyltransferase (AGT) is an enzyme that performs the direct repair of an alkylated guanine base by transferring the alkyl group to a cysteine residue.

View Article and Find Full Text PDF

Cytochrome P450 peroxygenases use hydrogen peroxide to hydroxylate long-chain fatty acids by bypassing the use of O and a redox partner. Among the peroxygenases, P450 uniquely performs decarboxylation of fatty acids and production of terminal olefins. This route taken by P450 is intriguing, and its importance is augmented by the practical importance of olefin production.

View Article and Find Full Text PDF

The current theoretical perception of enzymatic activity is highly reliant on the determination of the activation energy of the reactions, which is often calculated using computationally demanding quantum mechanical calculations. With the ever-increasing use of bioengineering techniques that produce too many variants of the same enzyme, a fast and accurate way to study the relative efficiency of enzymes is currently in high demand. Here, we propose the local electric field (LEF) of the enzyme along the reaction axis as a descriptor for the enzymatic activity using the example of chorismate mutase in its native form and several variants (R90A, R90G, and R90K/C88S).

View Article and Find Full Text PDF