Publications by authors named "Shakeri-Zadeh A"

Various classes of nanotheranostics have been developed for enhanced tumor imaging and therapy. However, key limitations for a successful use of nanotheranostics include their targeting specificity with limited off-site tissue accumulation as well as their distribution and prolonged retention throughout the entire tumor. Due to their inherent tumor-tropic properties, the use of mesenchymal stem cells (MSCs) as a "Trojan horse" has recently been proposed to deliver nanotheranostics more effectively.

View Article and Find Full Text PDF

Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example.

View Article and Find Full Text PDF

Recent years have seen considerable progress in the development of nanomedicine by the advent of 2D nanomaterials serving as ideal platforms to integrate multiple theranostic functions. We synthesized multifunctional stimuli-responsive 2D-based smart nanocomposites (NCs), comprising gold nanoparticles (AuNPs) and superparamagnetic iron oxides (SPIOs) scaffolded within graphene oxide (GO) nanosheets, coated with doxorubicin (DOX)-loaded 1-tetradecanol (TD), and further modified with an alginate (Alg) polymer. TD is a phase-change material (PCM) that confines DOX molecules to the GO surface and melts when the temperature exceeds its melting point (m=39 °C), causing the PCM to release its drug payload.

View Article and Find Full Text PDF

The integration of multiple therapeutic and diagnostic functions into a single nanoplatform for image-guided cancer therapy has been an emerging trend in nanomedicine. We show here that multifunctional theranostic nanostructures consisting of superparamagnetic iron oxide (SPIO) and gold nanoparticles (AuNPs) scaffolded within graphene oxide nanoflakes (GO-SPIO-Au NFs) can be used for dual photo/radiotherapy by virtue of the near-infrared (NIR) absorbance of GO for photothermal therapy (PTT) and the Z element radiosensitization of AuNPs for enhanced radiation therapy (RT). At the same time, this nanoplatform can also be detected by magnetic resonance (MR) imaging because of the presence of SPIO NPs.

View Article and Find Full Text PDF

The present study was performed to examine whether caspofungin-coated gold nanoparticles (CAS-AuNPs) may offer the right platform for sensitivity induction in resistant isolates. A total of 58 archived species were enrolled in the research. The identification of spp.

View Article and Find Full Text PDF

This study was performed to specify the efficiency of imaging nanoparticle concentration as contrast media in dual-energy computed tomography (DECT). Gold nanoparticles (AuNPs) and gold nanoparticles-conjugated folic acid through cysteamine (FA-Cya-AuNPs) were both considered as contrast agents. Characterization of NPs was performed using Dynamic Light Scattering (DLS) and zeta potential.

View Article and Find Full Text PDF

Applying toxic chemical to the synthesis of stable gold nanoparticles is one of the limitations of gold nanoparticles for therapeutic applications such as photothermal therapy. Plant compounds such as apigenin (API) with therapeutic potential can be applied in the synthesis of gold nanoparticles. API-coated gold nanoparticles (Api@AuNPs) with an average size of 19.

View Article and Find Full Text PDF

Cancer vaccination using tumor antigen-primed dendritic cells (DCs) was introduced in the clinic some 25 years ago, but the overall outcome has not lived up to initial expectations. In addition to the complexity of the immune response, there are many factors that determine the efficacy of DC therapy. These include accurate administration of DCs in the target tissue site without unwanted cell dispersion/backflow, sufficient numbers of tumor antigen-primed DCs homing to lymph nodes (LNs), and proper timing of immunoadjuvant administration.

View Article and Find Full Text PDF

Background: Photothermal therapy (PTT) is a promising method in the field of cancer hyperthermia. In this method, interaction between laser light and photosensitizer material, such as plasmonic nanoparticles, leads into a localized heating. Recent efforts in the area of PTT aim to exploit targeting strategies for preferential accumulation of plasmonic nanoparticles within the tumor.

View Article and Find Full Text PDF

Correction for 'Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice' by Ali Shakeri-Zadeh et al., J. Mater.

View Article and Find Full Text PDF

Background: Gold nanoshells can be tuned to absorb a particular wavelength of light. As a result, these tunable nanoparticles (NPs) can efficiently absorb light and convert it to heat. This phenomenon can be used for cancer treatment known as photothermal therapy.

View Article and Find Full Text PDF

Nanotechnology-based photothermal therapy (NPTT) is a new emerging modality of cancer therapy. To have the right prediction and early detection of response to NPTT, it is necessary to get rapid feedback from a tumor treated by NPTT procedure and stay informed of what happens in the tumor site. We performed this study to find if proton magnetic resonance spectroscopy (1H-MRS) can be well responsive to such an imperative requirement.

View Article and Find Full Text PDF

Background: Recent advances in nanotechnology have led to the use of nanomaterials in the diagnosis of cancer by imaging techniques.

Objective: This study aimed to synthesize fluorescein-conjugated gold nanoparticles and study the parameters affecting the loading of fluorescein on synthesized coated gold nanoparticles with the ability to be used in medical diagnostic methods.

Methods: The synthesized gold nanoparticles were functionalized with polyethylene glycol.

View Article and Find Full Text PDF

Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action.

View Article and Find Full Text PDF

Use of hair samples to analyze the trace element concentrations is one of the interesting fields among many researchers. X-ray fluorescence (XRF) is considered as one of the most common methods in studying the concentration of elements in tissues and also crystalline materials, using low energy X-ray. In the present study, we aimed to evaluate the concentration of the trace elements in the scalp hair sample through XRF spectroscopy using signal processing techniques as a screening tool for prostate cancer.

View Article and Find Full Text PDF

Maximal synergistic effect between photothermal therapy and radiotherapy (RT) may be achieved when the interval between these two modalities is optimal. In this study, we tried to determine the optimal schedule of the combined regime of RT and nano-photothermal therapy (NPTT), based on the cell cycle distribution and kinetics of cell death. To this end, alginate-coated iron oxide-gold core-shell nanoparticles (FeO@Au/Alg NPs) were synthesized, characterized, and their photo-radio sensitization potency was evaluated on human nasopharyngeal cancer KB cells.

View Article and Find Full Text PDF

The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site.

View Article and Find Full Text PDF

Background: Selection of the best treatment modalities for lung cancer depends on many factors, like survival time, which are usually determined by imaging.

Objectives: To predict the survival time of lung cancer patients using the advantages of both radiomics and logistic regression-based classification models.

Material And Methods: Fifty-nine patients with primary lung adenocarcinoma were included in this retrospective study and pre-treatment contrast-enhanced CT images were acquired.

View Article and Find Full Text PDF

Design of an MR-compatible and computer-controlled odour stimuli system is essential in the studies of human olfactory function. Olfactometers are used to deliver odours to the subjects in an objective manner. We present a portable, computer-controlled eight channels olfactometer able to stimulate olfaction by employing liquid odorant stimuli.

View Article and Find Full Text PDF

Although multimodal cancer therapy has shown superior antitumor efficacy in comparison to individual therapy due to the potential generation of synergistic interactions among the treatments, its clinical usage is highly hampered by systemic dose-limiting toxicities. Herein, we developed a multi-responsive nanocomplex constructed from alginate hydrogel co-loaded with cisplatin and gold nanoparticles (AuNPs) (abbreviated as ACA) to combine chemotherapy, radiotherapy (RT) and photothermal therapy. The nanocomplex markedly improved the efficiency of drug delivery where ACA resulted in noticeably higher tumor growth inhibition than free cisplatin.

View Article and Find Full Text PDF

In order to determine the level of cell damage in cancerous cells, current cytogenetic tests have limitations such as time consumption and high cost. The aim of this study was to demonstrate the ability of nonlinear refractive (NLR) index as a predictor of breast cell damage caused by magneto-plasmonic nanoparticle based thermo-radiotherapy treatments. MCF-7 breast cancer cells were subjected individually to the treatment of radiation, radio-frequency (RF) hyperthermia, and radiation + RF hyperthermia.

View Article and Find Full Text PDF

Alzheimer's disease (AD) as a progressive neurodegenerative disorder is one of the leading causes of death globally. Among all treatment approaches, mesenchymal stem cells (MSCs)-based therapy is a promising modality for neurological disorders including the AD. This study aimed to magnetically deliver human Wharton's jelly-derived MSCs (WJ-MSCs) toward the hippocampal area within the AD rat's brain and determine the effects of them in cognitive improvement.

View Article and Find Full Text PDF

Background: Despite considerable advances in nano-photo-thermal therapy (NPTT), there have been a few studies reporting in-depth kinetics of cell death triggered by such a new modality of cancer treatment.

Objective: In this study, we aimed to (1) investigate the cell death pathways regulating the apoptotic responses to NPTT; and (2) ascertain the effect of NPTT on cell cycle progression.

Methods: Folate conjugated gold nanoparticle (F-AuNP) was firstly synthesized, characterized and then assessed to determine its potentials in targeted NPTT.

View Article and Find Full Text PDF

Multimodal cancer therapy has become a new trend in clinical oncology due to potential generation of synergistic therapeutic effects. Herein, we propose a multifunctional nanoplatform comprising alginate hydrogel co-loaded with cisplatin and gold nanoparticles (abbreviated as ACA) for triple combination of photothermal therapy, chemotherapy and radiotherapy (thermo-chemo-radio therapy). The therapeutic potential of ACA was assessed in combination with 532 nm laser and 6 MV X-ray against KB human mouth epidermal carcinoma cells.

View Article and Find Full Text PDF