Publications by authors named "Shajesh Palantavida"

Nanoparticle mediated photo-induced hyperthermia holds much promise as a therapeutic solution for the management of diseases like cancer. The conventional methods of temperature measurements do not measure the actual temperature generated in the vicinity of the nanoparticles during illumination. In contrast, nano temperature sensors built on hyperthermic nanoparticles can relay local temperatures around the nanoparticles during thermal induction.

View Article and Find Full Text PDF

Photothermal therapy utilizes photothermal agents and the use of nanoparticle agents is deemed advantageous for multiple reasons. Common nano-photothermal agents normally have high conversion efficiencies and heating rates, but bulk temperature measurement methods do not adequately represent the nanoscale temperatures of these nanoheaters. Herein, we report on the fabrication of self-limiting hyperthermic nanoparticles that can simultaneously photoinduce hyperthermia and report back temperature ratiometrically.

View Article and Find Full Text PDF

New ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG).

View Article and Find Full Text PDF

Cellulose acetate (CA), viscose, or artificial silk are biocompatible human-benign derivatives of cellulose, one of the most abundant biopolymers on earth. While various optical materials have been developed from CA, optical CA nanomaterials are nonexistent. Here we report on the assembly of a new family of extremely bright fluorescent CA nanoparticles (CA-dots), which are fully suitable for in vivo imaging / targeting applications.

View Article and Find Full Text PDF

Characterization data of fluorescent nanoparticles made of cellulose acetate (CA-dots) are shown. The data in this article accompanies the research article "" [1]. The measurements and calculation of brightness of individual CA-dots are presented.

View Article and Find Full Text PDF

Unlabelled: We report on the first functional use of recently introduced ultrabright fluorescent mesoporous silica nanoparticles, which are functionalized with folic acid, to distinguish cancerous and precancerous cervical epithelial cells from normal cells. The high brightness of the particles is advantageous for fast and reliable identification of both precancerous and cancerous cells. Normal and cancer cells were isolated from three healthy women and three cancer patients.

View Article and Find Full Text PDF