We present the first experimental study of unpinning an excitation wave using a circularly polarized electric field. The experiments are conducted using the excitable chemical medium, the Belousov-Zhabotinsky (BZ) reaction, which is modeled with the Oregenator model. The excitation wave in the chemical medium is charged so that it can directly interact with the electric field.
View Article and Find Full Text PDFContext: The increased prevalence of nonstrabismic binocular vision anomalies (NSBVA) has given rise to the need for cost-effective screening and diagnostic tools.
Aims: The aim of the study is to assess the efficacy of an indigenously developed computer-based binocular vision assessment software (Train Your Eyes®) in screening NSBVA.
Subjects And Methods: Subjects who visited the binocular vision clinic of a tertiary eye care center with asthenopic symptoms between January 2019 and January 2020 were included in the study.
Spiral waves of excitation are common in many physical, chemical, and biological systems. In physiological systems like the heart, such waves can lead to cardiac arrhythmias and need to be eliminated. Spiral waves anchor to heterogeneities in the excitable medium, and to eliminate them they need to be unpinned first.
View Article and Find Full Text PDFProc Math Phys Eng Sci
October 2019
Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral.
View Article and Find Full Text PDFWe propose a solution to a long-standing problem: how to terminate multiple vortices in the heart, when the locations of their cores and their critical time windows are unknown. We scan the phases of all pinned vortices in parallel with electric field pulses (E-pulses). We specify a condition on pacing parameters that guarantees termination of one vortex.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Analyzing the dynamics of complex excitation wave patterns in cardiac tissue plays a key role for understanding the origin of life-threatening arrhythmias and for devising novel approaches to control them. The quantification of spatiotemporal complexity, however, remains a challenging task. This holds in particular for the analysis of data from fluorescence imaging (optical mapping), which allows for the measurement of membrane potential and intracellular calcium at high spatial and temporal resolution.
View Article and Find Full Text PDFCardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text].
View Article and Find Full Text PDFPacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured in vitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2011
Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media.
View Article and Find Full Text PDFRegular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2007
Every sixth death in industrialized countries occurs because of cardiac arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF). There is growing consensus that VT is associated with an unbroken spiral wave of electrical activation on cardiac tissue but VF with broken waves, spiral turbulence, spatiotemporal chaos and rapid, irregular activation. Thus spiral-wave activity in cardiac tissue has been studied extensively.
View Article and Find Full Text PDF